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INTROL>UCTION

Let fl be a posItIve measure on the real line with finite moments and
infinite support, and let {p(x,n)};;_o, p(x,n)=k"x"+ ...,kn>O, be the
system of orthonormal polynomials associated with fl. The polynomials
p(x, n) satisfy the recurrence formula

a(n + \ )p(x, n + \) + b{n) p(x, 11)+ a(n) p(x, n - 1) = xp(x, n),

p(x, -\) =0, p(X, 0) = 1.
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Recently there has been a great deal of interest [1-13] in investigating
the nature of the relationship between the orthogonal polynomials, the
recurrence coefficients, and the measure.

Here we investigate the consequences of assuming that the coefficients in
the recurrence formula are asymptotically periodic (see (IIU)). This
problem is an old one and certain aspects of it were considered by Stieltjes
[14], Perron [15], and later by Geronimus [16-18] (see [18] for further
references to the Russian literature).

We proceed as follows: in Section II we consider the case where the coef
ficients in the recurrence formula form periodic sequences. The Green's
function (see also Geronimus [17]) is constructed and its analytic proper
ties discussed. Using the Green's function we construct a function which is
conformal in a neighborhood of 00 and maps 00 to ° (see Szego [19,
Chap. XVI] and Barnsley, Geronimo, and Harrington [20]). Then
(Sect. III) we consider the general case as a perturbation of the periodic
case. The techniques of scattering theory are introduced and used to
investigate the properties of the general system when it is assumed that the
coefficients converge to their asymptotic values at certain preassigned rates.
In Section IV the measure, with respect to which the polynomials satisfying
the recurrence formula are orthonormal, is constructed and the properties
of the measure are investigated. It is shown that under certain conditions, it
falls into the Szego class. Finally in Section V we investigate the asymptotic
behavior of the orthogonal polynomials.

II. THE PERIODIC CASE

Given ao(n + 1) > ° and bo(n) E IR for n =0, 1, 2,... and assuming the
periodicity condition

ao(n +N) = ao(n),

bo(n + N) = bo(n),

n= 1, 2,...,

n = 0,1,2, ...,
(II.1 )

N~ 1, we form the following three term recurrence formula

ao(n + 1) q(x, n + 1) + bo(n) q(x, n)

+ ao(n)q(x,n-l)=xq(x,n), n =0,1,2, ... (11.2)

(here we take ao(O) = ao(N)). If we impose the boundary condition

q(x, 0) = 1, q(x, -1)=0, (II.3 )

then q(x, n) is a polynomial of degree n with leading coefficient positive
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and we know from Favard [21], that there exists a probability measure flo
such that

f"J q(x, n) q(x, m) d/lo= (jn,m'
~ ro

(II.4 )

(U.S)
q(kl(X, -1) = O.

We can also associate with the above coefficients the kth associated
polynomials q(k)(X, n) satisfying

ao(n;t k+ 1) q(kl(X, n + 1) + bo(n +k) q(kl(X, n) + ao(n + k) q(kl(X, n -1)

= xq(k)(X, n), n = 0, 1, 2, ...,

q(kl(X, 0) = 1,

Given any two solutions qj, q2 of (II.2), we define the Wronskian
W[qj, q2] as

W[qj, q2] = ao(n + 1){qj(x, n + 1) q2(X, n) - ql(X, n) q2(X, n + 1n, (11.6)

which is independent of n. Furthermore from the general theory of second
order linear difference equations one finds that two solutions q I' q2 of (II.2)
are linearly independent in n iff W[qj, q2] #00.

As a first application of (II.6) we notice

W[q, q(ll] = ao(n + 1)[q(x, n + 1) q(l)(x, n - 1) - q(x, n) q(ll(x, n)]

= - ao(1 ) #0 0, (II.?)

which implies that q(x, n) and q(l)(x, n) are two linearly independent
solutions of (II.2).

To investigate the consequences of the periodicity condition (ILl) we
begin by constructing a recurrence relation that relates q(x, n + 2N) and
q(x, n +N) to q(x, n).

LEMMA 1. Let q j (x, n) be any solution of (II.2) and let the recurrence
coefficients satisfy (ILl), then

qj(x, n + 2N) = {q(X, N) - ao~~:\) q(l)(x, N - 2)} ql(X, n + N)

-ql(x,n), n=O,1,2,.... (I1.8)

Proof Because of the periodicity of the coefficients, we see that
q(x, n + N) and q(ll(x, n + N - 1) will again be solutions of (II.2) so that,

q(x, n + N) = Aq(x, n) + Bq(ll(x, n - 1)

q(ll(x, n + N -1) = Cq(x, n) +Dq(ll(x, n -1)

(11.9)

(II.I0)
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where A, B, C, and D do not depend on n. Setting n equal to 0 and -1 we
find

A = q(x, N),

C=q(l)(x, N -1),

(11.11 )

Letting n -> n + N in (11.9) then eliminating q(l)(x, n + N - 1) using (11.10)
and q(1)(x, n - 1), using (II.5) yields

q(x, n + 2N) = (A + D) q(x, n + N) + (BC - AD) q(x, n).

By means of (11.7) one finds that BC-AD = -1 and this coupled with
(II.ll) gives (11.8) for q. Using a similar procedure on (11.10) one arrives at
(11.4) for q(l) and since all the solutions of (11.2) can be written as a linear
combination of q and q(l) the result follows.

COROLLARY 1. Given (11.1) and q(k)(X, n), k ~ 0 satisfying (11.5) one has
for k~O,

(k)( N) _ ao(N +k) (k+ 1)( N _ 2)
q x, ao(N + k + I) q x,

_ ao(N) (I)
- q(x, N)- ( 1) q (x, N-2).

ao N+

Proof The polynomials q(k)(X, n) satisfy a recurrence relation with
periodic coefficients and since q(k) and q(k + I) are linearly independent
solutions of (11.5) one finds

q(k)(X, n + 2N) = {q(k)(X, N) - ao~~:: :)1) q(k+ I)(X, N - 2)}
x q(k)(X, n + N) - q(kl(X, n), n = 0, 1, 2, ....

On the other hand q(k)(X, n - k) also satisfies (11.2) and it is a consequence
of Lemma 1 with n replaced by n + k that q(kl(X, n) satisfies (11.8). The
identification of both relations then gives the corollary.

Remark 1. Relation (11.8) is again a recurrence relation but with coef
ficients constant in n. Certain solutions of this equation will play a fun
damental role in what is to follow.
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Applying the method of characteristic equations to (H.8) we find
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(II.12)

Splitting the above equation into two equations of degree N, we define

where

N-2)+p(x)} 13)

{(
a (N) )2 }1/2

p(x) = q(x, N) - ao(~+ 1) q(l)(x, N - 2) - 4

with the square root chosen such that

Since the constant term in (II.12) is one, we have

(II.

(IU5)

We now examine p(X)2; setting

Q +(x, N) = q(x, N) - ~o(N)) q(l)(x, N - 2) ± 2 16)
- ao N + 1

we denote the zeros of Q ± (x, N) by {xt};"'~ I' Let Xj,N _ I and xJ~- I be the
zeros of q(x, N - 1) and q(l)(x, N - 1) respectively, ordered so that

d (I) (I) '-12 N-2Xj,N-l <Xj+I,N-l, an Xj,N_I <Xj+I,N-l,j- " ... , .

LEMMA 2 (cf. Geronimus [16J, Kac and Van Moerbeke [24], Van
Moerbeke [25J). All the zeros of p(X)2 are real (but not necessarily sim
ple) and, ordering the zeros ofQ±(x) as x i± ~Xi±+1 one has,

- > + >- (I) >- + - >-XN XN ~ XN-I,N-I, XN- I.N- 1 ~ XN_ 1 > XN_ I ~ XiV-2,N-I,

(I) >- (I) (_)N (_)N+l
XN_ 2,N _ I ~ '" ~ XI,N - I' XI,N _ 1 ~XI> Xl' (II.!7)

Furthermore, if Iq(Xi,N-I' N)I = 1, then either Q+(x, N) or Q_(x, N) may
have a double zero.
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Proof By means of (II.7) one finds that,

ao(N) q(Xj,N-l> N) q(l)(Xj,N_l> N - 2) = -ao(N + 1),

so that

1
Q±(Xj,N-l, N) = q(Xj,N-l, N) + ( N) ± 2.

q X j ,N-l'

(11.18 )

(II.19)

Since the zeros of q(x, N) and q(x, N - 1) interlace one finds that
sgn q(Xj,N -1' N) = ( _1)N - j. The above remarks coupled with the fact that
Ix + 1/xl ~ 2 for x real imply that Q± (x, N) change sign N - 1 times, which
in turn implies, since they are real polynomials, the reality of their zeros
and the interlacing of their zeros with those of q(x, N - 1). Since the zeros
of q(l)(x, N - 1) and q(x, N) interlace an argument similar to the one above
gives the result for q(l)(x, N - 1). To arrive at (II.17) we note that for x
large

ao(N) (1)

q(x,N)- ao(N+1)q (x,N-2)

is positive, which implies for large enough x, Q + (x, N) > O. Consequently
x"j;<xN, At XN-l,N-l' Q±(XN-l,N-l>N):::;O so that Q+(x,N-1) must
have a zero greater than or at XN-l,N-l' Since Q+(x,N)-Q_(x,N)=4,
the next zero of Q± (x, N) is a zero of Q+ (x, N) which, because of the
interlacing property, will be before x N_ 2,N _ 1 and on or after x N-1,N _ I' At
XN- 2,N-l> Q±(XN-2,N-l,N)~O so that XN- 2,N-l:::;XN- 1<Xt_l' This
establishes (II.17). If Iq(Xj,N -1> N)I = 1 for some j, then from (II.19), X;,N-l
will be a zero of either Q+ (x, N) or Q_(x, N) and we see from (II.17) that
Q± (x, N) may have a double zero.

We now define the set E:

which is composed of at most N disjoint intervals, the set E*:

E* - (x + x + ) u (x - x - ) u '" u (x( _)N x( - )N)- N-l' N N-2' N-l 1 '2 ,

(II.20)

(II.20A)

and the polynomial Vex, N - 1) = Q'+ (x, N) = Q'_ (x, N). From the above
definitions, it is obvious that in each of the above open intervals defining
E* that is not empty there will be one and only one zero of Vex, N - 1)
(see Fig. 1).

Let V be the unit circle, D be the open unit disk, and jj = D u V. Let C
be the extended complex plane and G = C\E. Let g(z) be the Green's
function for G, that is g(z) is harmonic in G except at 00 where g(z)-lnlzl



ORTHOGONAL POLYNOMIALS

Q+(x,N)
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1-"1<;. 1. Construction of F and F* The E is in hold line. the set F* are the intervals in
between (S = 7).

is harmonic, and limc_r.g(z)=O. We now form the function g(z) by
adding ih, to g(z), h a conjugate harmonic function of g(z) chosen so that
g(z) is a multivalued analytic function on G except at x., where g(z) --In::.
is analytic. i(z) has the property that limo _ L Re i(z) = O. In our case one
sees that

I· IW(Z)I_kIS1m ,- .\'
.- - 'f. Z

and 1\I'(z)1 = 1, Z E E and therefore we may choose an appropriate branch
of the Nth root so that g(z) = In w(z). Thus, the capacity of E is given by

C( E) = (r\ GnU») 1\ > O.

Since Iw(z)1 = 1, z E E we see that w(z) maps G into the component of the
complement of U containing x:. However, because G is in general not a
simply connected region, w( z) is in general not single valued. For large
enough z, w(z) is conformal and we let I' be the inverse of w. For each
oE [0, 2n:) we define ro(O) to be the minimum number ~ 1 such that i' may
be analytically continued from :x: along Ro= {relf} l r> ro} (physically they
are the lines of force). The set s = U0 I( Ro) is called the Green's star
domain for G (see Sario and Nakai [22 J). In our easc

, w(z) U(z. N- I)
W (7) =------

- Np(z)
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~ ~
l/W[E*J ~

-1
1

\
FIG. 2. The image of G under the mapping l/w (N = 7).

and w'(z) =0 (ZE G) at the zeroes of U(z, N -1) that are in E*. Con
sequently s = (E u E* y. On s, w(z) is conformal and maps s to the exterior
of U minus radial segments emanating from the roots of unity given by
(11.13) and ending at the image of one of the zeros of U(z, N -1) under
w(z). In Fig. 2, we have drawn l/w(s).

Setting

R(z)= (q(Z, N)- ao~~:\)q(l)(z, N -2)Y -4,

we have by the convention adopted above, JR(x±iO)= ±iJ-R(x),
x E E. Let F be the two sheeted Riemann surface which has cuts along the
disconnected segments E with branch points at the ends of these segments.
Then F is of genus at most N - 1 and G is one sheet of F. Denoting the
other sheet as G' one has that

lim pC:) = -kN on G'.
z_ 00 Z

With this we can now analytically continue wN and w - N onto G'.
We now return to the solutions of (11.5).

LEMMA 3. Let q(i)(x, n) satisfy (11.5) then

-n (i) ~ A(n + N)
Iw q (x,n)I"N+11_w-2NI (n+N) (11.21 )

where A is a positive constant.

Proof From Lemma 1 and Corollary 1, the sequence q*(k) =
q(i)(x, kN +s) (i, N, s fixed) satisfies the relation

{
ao(N) .}

q*(k + 1) = q(x, N) - ao(N + 1) q(l)(x, N - 2) q*(k) - q*(k - 1).
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Since It' -- kN and IilTV are two linearly independent solutions of the above
equation when p(x) to 0, one has

Setting k = 0 and k = 1, one easily finds,

~r IkN)qli)(x,kN+s)= 1 0,,{qli)(x,S)(IV--2kS_W H)
1 - II-' -,

+ W (,\)qli)(x, N + s)(l - II' 2k,\')}. (II,22)

Since lim< _.c(x/II') < Xi one has

K = max max sup!w 'q(')(x, .1')1 < Xc,
o ~ i < :V 0 ~ s < 2,v 1 x!:-:-f:

and using this in (11.22) yields

(II.23 )

2k N . _ \I' -- 2\ + i1 _ \I'

! \I' - (k.'V ~')qli)(x, kN + .1')1

K f
~Il-w 2,\!llw

Now one can use the bound

I 1- Z21l I n

1
--0 ~C 2
,1-::-1 1+ll-z!n

to obtain

(Izl ~ 1)

2k\' I }.

where A = 2CK, from which the general bound follows.

THEORE~ 1. Set

q ... (x, n) = q(x, n + N) - \I.Nq(X, nJ

and

q_(x,n)=q(x,n+N)-~r .vq(x,n),

(II.24 )

(IUS)

then q±(x,n) are two solutions 0{(11.2) such that q,(x,n)=w'"r/J±(x,n),
where r/J -+- (x, n) is periodic in n of period N. These two solutions are linearly
independ~nt in n for fixed x ill q(x, N- 1) to 0 and W

2N to 1.

640.46:3-4
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Proof Since both q(x, n + N) and q(x, n) are solutions of (II.2) one
easily sees that q ± (x, n) are also solutions. From Lemma 1, one has

q(x, n + 2N) = (w N + w- N
) q(x, n + N) - q(x, n). (II.26)

Letting n~ N +n in (11.24) and (II.25) then substituting the result into the
above equation yields

From (11.6) one finds

W[q+, q_] = ao(N) q(x, N -l)[w- N
- wN

]

which gives the theorem.

(II.27)

(11.28 )

LEMMA 4. For any n, q+(x, n) and q_(x, n) are (a) analytic and single
valued in G - {oo}, (b) real for x real ~E, and (c) q +(x, n) = q _(x, n) x E E.
Furthermore,

and

XEC, (II.29)

(II.30)

Proof The analytic properties follow from the definition of q + and the
following facts: (a) wN and w- N are single valued and analytic on
G-{oo}, (b)wN and w- N are real for x real x~E, and (c)WN=W- N,
x E E. (II.29) follows by writing n = kN + s then using (II.27) and (11.23).
To prove (II.30) one has that

q+(x, n) q_(x, n) = q(x, n + N)2_ (wN + w- N
) q(x, n + N) q(x, n)

+ q(x, n)2

= q(x, n + N)2 - q(x, n + 2N) q(x, n),

where Lemma 1 has been used. Now q(m+ l)(X, n - m -1) is a solution of
(II.2) and can be written as a linear combination of q(x, n) and q(x, n +N),
i.e.,

(m+l)( 1) ao(m+l) 1q x n-m- -
, - ao(N) q(x, N -1)

x [q(x, m +N) q(x, n) - q(x, m) q(x, n +N)].
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Replacing n by m + N and then setting m = n yields
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q(x, N - I) q(n-+- 1)(X, N _ I) = a~:~)I)

x {q(x, n + N)2 - q(x, n + 2N) q(x, n)].

Consequently,

( ) ( ) _ ao(N) ( N I) In I ll( " I)q -+- X, n q _ X, n - ( I) q X, - q X, ,,- .
ao n +

(lUI)

Now using the fact that q. (x, n) = O(wn
j xl, Lemma 3 gives (TUG).

Equation (11.31) leads to the following:

LEMMA 5. The zeros of q _ (x, kN + s) and q _(x, kN + .1'), k = 0, 1,..., S =

0, 1'00" N - I, are real and may only he at the zeros of q(x, N - I 1and/or the
zeros of q(S -+- I )(x, N - I). Furthermore, a zero X j of' q(x, N _. I) will be a
common zero ()f q -+- (x, n) for all n if and only if iq(xj , ,II,i) I ? 1.

Proof Only the last part of the lemma needs to be demonstrated. We
note that XI will be a common zero of q. (x, n) for all n if and only if
q + (xj ' 0) = O. From (11.24) and (II.13), one sees that this can only happen
if

( N) ao(N) (1)( '\/' 2) (. )q x)' + q XI': - = P Xi .
ao(N + I)

Since

we see that q -'- (Xi' 0) = 0 if and only if

aoU'v) (11 '
q(xj,N)+ . q (x j ,l'v-2)

aoUv + I)

and p(xj ) have the same sign. Since the signs of q(xi , N) and p(xj ) are the
same, (II.7) shows that q -+- (xi' 0) = 0 if and only if !q(xi , !V)I ? 1.

We note that from (lI.2S) and (lUI), one finds for large x that

() 1 ...
,
i 0" _1_..q+ X, n ::::::x".

q(x, N - I) 'i 0 ([0(1)
(11.32 )
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III. THE GENERAL CASE

We now suppose we are given the recurrence relation

a(n + 1) p(x, n + 1) + b(n) p(x, n) + a(n) p(x, n - 1)

= xp(x, n), n = 0, 1, 2,..., (1II.1)

p(x, -1)=0, p(x,0)=1 (111.2)

with a(n) > °and b(n) E IR such that

lim la(n)-ao(n)1 =0,
n~ 00

lim Ib(n)-bo(n)1 =0,
n~ 00

(1II.3 )

where the sequences ao(n) and bo(n) satisfy (11.1). By Favard's theorem, the
polynomials p(x, n) will be orthogonal with respect to some measure on
the real lin:,:. The kth associated polynomials p(k)(X, n) satisfy

a(n +k+ 1)p(k)(X, n + 1) + b(n + k) p(k)(X, n)

+a(n +k) p(k)(X, n -1)

= Xp(k)(X, n), n = 0, 1, 2, ..., k ~ 0. (111.4)

(We will suppress the superscript for k = 0.) Let Gl> G2 be the solutions of

ao(n + 1) Glx, n + 1, m) + bo(n) Glx, n, m) + ao(n) Glx, n -1, m)

- xG;(x, n, m) = (jn,m,

with boundary conditions

i= 1, 2, (IlLS)

G1(x, n, m) = 0,

G2(x, n, m)=O,

n~m,

n~m,

then (Geronimo [9J, Atkinson [23J)

ao(n + 1) G1(x, n, m) = q(n+ l)(X, m - n -1),

=0,

and

=0,

-1 ~n<m,

m~n,

-1 ~m<n,

n~m.

(III.6 )

(III.7)
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THEOREM 2. Let p(x, 11) satisfy (III. I ) alld (111.2) alld let

, n aU)
p(x,Il)= n -(.)p(x,Il),

/_ i ao I

thell

m ·_·1

p(x,m)=q(x,m)+ L k1(x,n.m)p(x,n)
11 ~_ 0

II"here

Furthermore, for x E t,
A(m+N)

ill' mp'(x, m): ~--_--:.- ~---

, '"" N + I - It' 2'"1 (m + N)

{

m I n+N}
x exp A L k(ll) -;\-,-1--.-1-1-.--\r-.-"'2.77\;.-(-n-+-:V-')

n -- 0 .

\rhere A is a positive constant and

k
_lbo(n)--h(Il)1 ao(n+I): . a

2
(n+i)1

(11)- I + II - 0 •

ao(n + I)' (lo(n + 2) a(j(1l + I) I

263

(I1I.X)

(III.9 )

(l1!.10)

(III.lIJ

Proof Equation (II LX) has already been given in Geronimo [9 J and
can easily be derived using standard manipulations. To obtain the bound
(III.lO) one begins by substituting (1I1.6) into (111.9) then multiplying by
III"; . (m 11) and using Lemma 3 which yields

) m-Il+N
\H·"-lm-'flkl(x,n.nl)I~Ak(n) '.v- ~

N + I + \I' -. (111 - n + Iv)

I11+N
~Ak(ll) 'v .

N+II-II""-I(m+N)

(111.12)

Now using the method of successive approximations on (III.S) we may
write

.~.

Iwl-'''' fi(x, 111) = L !dx, m)
i ,- ()

(1II.l3l
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where

and

GERONIMO AND VAN ASSCHF:

go(x, m) = Iwl . m q(X, m)

m-·[

!dX, m) = L Iw!-(m-n) k l(X, n, m) gi l(X, n).
n::....:O

From Lemma 3, one has that

A(m+N)
Igo(x,m)I~N+ll_w 2,\'1 (m+N)

and by induction that

Taking the magnitude of (111.13) then using the above two equations gives
(III. 10 ).

We now search for solutions p .i (x, n) such that

lim Ip+(x, n) - q l(X, n)1 = 0.
n - ::1:;

To this end we temporarily impose the following condition on coefficients

a(no+j+ I)=ao(no+j+ I)

b(no+j)=ho(no+j) j=0,1,2,....
(III.14)

We denote the solutions of (lII.l), (111.2), and (III.14) by p(x, m; no) and
we define p + (x, m; no) as a solution of (TILl) such that
p±(x,m;no)=q.i(x,m) for m~no.

LEMMA 6. Let p + (x, m; no) be defined as aboGe and set

then

no
p,(x,m;no)=q,(x,m)+ L k 2(X,n,m)p+(x,n;no) (III.15)

n-=m+ 1
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where

k 2(x,n,m)= {bo(n)-b(n)} G2(x,n,m)

+ ao(n) {I - a:(n)} G2(X, 11 - 1. m).
ao(n) )

(Here "I_.f: =0 tor i>J·.)L... n _ J. n J(

Proof To find (III.15) one begins by multiplying (HI.!) by

X; a(i)
fl -') G2(x, n, m)

i 11' 1 ao(1

265

(III.l6)

and (Ill.5) by P+ (x, n, no) then subtracting and summing the result from 0
to oc. This yields using the appropriate boundary condition,

110

+ L k 2(x,ll,m)p_(x,n;no )'
n m+ 1

(III.I9)

The first term on the right-hand side is W[G 2 , q. ] which equals q ~(x, m)

and gives (II 1.15).

THEOREM 3. Let H = G u aG and suppose
c~;

L kAn) < x
11-0

where

(III.20)

then there exists a solution P I (x, n) of (III.l) such that w "'p + (x, m) is
analytic and single valued on G and continuous on H\(IlYv = I). Furthermore

lim IW(k l)!"(p+(x,m)-q,(x,m))I=O,

uniformly on closed suhsets of H\(W 2N = I). If
:x:,

L (n + N) k 2(n) < x
n ~ 0

m=kl'v'+s, (lII.21)

(I1I.22 )

then IV - 'Vp ~ (x, n) is continuous on Hand (III.2I ) converges unifcmnly there.
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Proof We begin formally by letting no --+ 00 in (IIUS). This gives us an
integral equation for p + (x, n). Now using the method of successive
approximations we write

00

w(k~1)Np+(x,m)=L glx,m)
i=O

where m=kN+s,

go(x, m) = W(k-1)Nq +(x, m)

and

00

glx,m)= L Wm-nk2(x,n,m)gi~1(x,n).
n=m+l

Since Iwl ): 1 on H, it follows from Lemma 4 that,

(IIL23 )

m=kN+s.

Now using (III. 16), (IIL7), Lemma 3, the fact that the a(i)'s are strictly
bounded away from zero, and the above inequality yields

where again the fact that Iw-11 ~ 1 on H has been used. By induction one
finds,

which upon substitution into (III.lS) (with no = (0) gives

!W(k-1)Np +(X, m)1 = Ii~O gil (III.24)

{

~ 00 (n +N) }
<Dexp A n~~+1 k 2(n) N+ll-w~2NI (n+N) .

Since each of the gi are analytic and single valued on G and continuous on
H, (III.20) and (IIL24) imply that (IIL23) converges uniformly on closed
subsets of H\(W2N = 1). Consequently, W(k~ 1)Np +(x, m), m = kN+ s is
analytic and single valued on G and continuous on H\ (W 2N = 1). If (III.22)
holds then (IIL23) converges uniformly on H giving the continuity of
W(k-1)Np + (x, m) on H. Subtracting q + (x, m) from both sides of (III.1S)
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(after setting no = :x) and then taking magnitudes and using (III.24) shows
that (11£.21) converges uniformly on closed subsets of HI,( 11'2 V = I) if one
has (111.20), while (III.21) converges uniformly on H if one has (III.22).

COROLLARY 3. ~f' (III.20) holds t!zen

110. .~ J

m=k/'v'+s (III.25 )

uniformly on closed subsets of H',(w 2
' = I). If' (1II.22) holds then (HI.25)

cOI11:erges unif'ormly on H.

Pro(;f: Subtracting the integral equation for p. (x, m) from (!Il.IS)
yields

1\,11. 11V{p.(x.m)--p (x,m,l1o ))

I k 2(X, 11, m) Wll. "'P. (x. 11)
1/ - 11:; -•. I

nc·

+ I k 2(x,n,m) 11.
1

1. Il\(jJ,{x,n)-p.lx,l1,no ))·
11-- m·1 1

The method of successive approximations now gives

! \1.11. I l\(jJ . (x, m) - jj . (x, 111. 11 0 )1 )

I'· k2{n)(n+,V) : .(1. 1).\- (. )1
::; , '. \I. p .\, n ,

II .. no, . 1 N + 11 - II' - •.\ I (11 + .v) .

_ { x (l + N) }
X exp A I k 2(l) IV + II _ \I' 2.\1 (l + N)

I-m' I

from which the conclusions of the corollary follow.

COROLLARY 4. I_et H' = G' u i"G', if' (III.20) holds then there exists a
solution of (111.1 ) such that

lim Iw I1 .1.)\(p (x,n) q (X,II));=O
f!- x..

unij()/'mly on closed sets of' If'\( 11'2.\ = I ). If (111.22) holds the convergence is
uniform on H. On E, p _. (x, n) = p + (x, n).

Pro(~t: Letting lV'v~W ", q,(x,m)~q (x,m), and p(x,m)-....
p (x, m) in the above discussion gives the first two assertions of the
corollary. The third follows from integral equations satisfied by p, (x, n)
and the facts that on E, w\' = I~' ,\ and q . (x, n) = q (x, 11).
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LEMMA 7. Given (III.20) then for x 1- E,

a(n + 1)[p + (x, n + 1) P + (x, n) - p + (x, n + 1) P + (x, n)]

00

=(x-x) L Ip+(x, iW,
i=n+ I

a(n + 1)[p + (x, n + 1) P + (x, n)' - p + (x, n + 1)' P + (x, n)]

00

L p+(x, if·
i=n+l

For x E J!\ (W
2N = 1), one finds

where

(III.26)

(III.27)

(III.28)

(III.29 )

Proof Since p + (x, n) satisfies (III.1), (III.26) and (III.27) follow from
routine manipulations and the facts that limn ~ 00 p + (x, n) = 0 and
limn ~ 00 p + (x, n)' = 0 for x 1- E. To show (III.28) we note that p + (x, n) and
p _ (x, n) are solutions of (III.1) that are continuous for x E E. Since
W[p_,p+]=ao(O)q(x,N-l)[w- N -wN

], we see that p_ and P+ are
linearly independent for xEJ!\(w2N =1). Writing p(x,n)=Ap+(x,n)+
Bp _ (x, n) one finds

A = W[p,p+]
W[p_,p+]

and B= _ W[p,p_]
W[p_,p+]

which yields the results.

We now divide the zeros of p+(z, n) into two categories: category RI(n)
contains all the roots ofp+(z,n) that are also zeros ofp+(z,n-l), while
R 2 (n) contains all the other zeros of p + (z, n).

LEMMA 8. Suppose (III.20) holds, then all the zeros of p + (x, n) in
G-{oo} are real, andp+(x,n),!-Ofor xEJ!\(w2N =1). Ifx I ER2(n) and
x lEG, then x I is a simple zero ofp + (x, n). Between two consecutive zeros of
p + (x, n) belonging to R 2(n) that are not separated by an interval of E there
is a zero of p + (z, n - 1) and a zero of p + (z, n + 1).

Proof From (III.26) one finds that all the zeros in R 2(n) are real and
from (III.27) simple. Let Xl and x 2 ER2(n). be two consecutive zeros of
p + (z, n) such that an interval of E does not lie between them. Then the
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sum in (III.27) is positive at x I and x 2 • Since p + (x, n) is real for all
x I ,,:; x":; x 2 , P+ (x, n)' must change signs between x I and X2 implying
through (III.27) that p + (x, n - 1) and p + (x, n + 1) change signs. Since
p+(x, n-l) andp+(x, n+ 1) are real for Xl ":;x":;x2 they each must have a
zero inside that interval. To show that the zeros in R I (n) are real, we begin
by noting that if xIERI(n), xIERI(i) Vi. Now consider the system of
polynomials satisfying (III.!) and (III.14). Since p+(z, m, no) = q+(z, m) for
m > no, x E R70(n) only if it is a common zero of q + (z, i), i> no. But from
(II.24) any common zero of q + (z, i) must be a zero of q(x, N - 1) which is
real, implying all the zeros in R7°(n) are real. This coupled with
arguments above show that all the zeros of p + (z, m, no) are real.
reality of the zeros of p + (z, n) now follows from Corollary 3 and Hurwitz's
theorem. That p + (x, n) # 0 for x E E\ (W

2N = 1) is a consequence of (III.28).
For if we replace p(x, n) by p(k)(X, n) we must replace p + (x, -1) by
p + (x, k - 1). Therefore if p + (x, k - 1) has a zero for x E E\(W2N = 1) then
so would p _ (x, k - 1) by Corollary 4 implying that all the p(k)(X, m) would
have a zero at that point contradicting the well-known interlacing property
of their zeros.

Let J I2 ~ 12 be the infinite dimensional matrix representation of (IIU).
Then Xi is an eigenvalue of J iff there exists a nonzero ljJ E 12 such that
JljJ = x,ljJ.

LEMMA 9. Suppose (III.20) holds. If (a)f+(xd=O, x t ER2(-1), and
xtftE, or (b) f+(xd = O,f'+(xd = 0, Xt E R I( -1) and xd E, then Xj is an
eigenvalue of J and

where

p+ (x, n) = p + (x, n)

=p+(x,n)/(x-xd

if a holds,

if b holds.

(III.30)

(III.31 )

Proof We begin with case (a) and consider the vector
ljJ= {p+(x1>n)}:~o' Then ljJE12 , ljJ i= 0 and JljJ=xjljJ showing that Xl is
an eigenvalue of J. In the case of (b) we note that p + (x j, n) == ° and
q + (x I' n) = 0 for all n. Consequently we can divide p + (x, n) by x - X j and
not change equations (III.1) or (III. IS ). Since

q+(:'~~I-ll~xl #0,
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it follows that for large enough n,

Consequently, the vector IjJ = {p + (x I' n) }:= 0 is an eigenvector of J with
eigenvalue x I'

THEOREM 4. If (111.22) holds then p + (x, n) has a finite number of zeros
on H.

Proof We need only consider the number of zeros of p+(x, n) on
E* u (W2N = 1), since on E\ (W2N = 1) p + (x, n) has no zeros, while for x E IR,
x ¢ E* u E, P+ (x, n) n = -1, 0, 1'00' has only a finite number of zeros
(Geronimo [9, Theorem IIU]). Consider now an interval E~ of E* and let
XI and x2, XI <x2 be the end points. We suppose there exists a q+(x, m)
such that q + (x 10 m) # 0. FOf if this is not the case then x I E R?(m), where °
denotes the periodic system, and q + (x I' j) =°Vj. Consequently we may
divide the integral equation for p + (x, n) ((IIUS) after setting no = 00) by
(X-XI) and use the same manipulations that led to (111.21) to show that
limm~oo IW(k-I)N(p~(X,m) - q~(x, m)1 = 0, m =kN+ s uniformly on H.
Here P~(x, m)=p+(x, m)/(x-xd, q~(x, m)=q+(x, m)/(x-xd. If there
does not exist a q~(x, m) such that q~(x1o m)#O one repeats the above
procedure once again. (111.31) shows that this procedure will be necessary
at most two times. Suppose that q + (x I' mo) # 0, then (11.27) shows that
q+(x l , mo+jN) #0. Let XoEG(XI+X2),X2) such that q+(xo,m)#O Vm,
and let D XI,XO be the open disk centered on the real axis with x I and Xo on
its boundary. Writing mo = koN + So we see from (III.21) and (11.27) that
there exists a j 0 such that for all j ? j 0,

IW(kO+j-I)N(p +(x, mo +jN) - q +(x, mo+jN»1

:( IW(ko+j-I)Nq+(x, mo+jN)I, (III.32 )

xE15 x I,x o' Consequently, by Rouch6's theorem p+(x, mo+ jN) for j?jo has
the same number of zeros inside D XI,XO as q + (x, mo+jN), i.e., a finite num
ber No. Lemma 8 now tells us that p + (x, n) Vn has a finite number of zeros
in D XI,XO that does not exceed some number N I' One now repeats the above
argument for the open disk D:tO,X2' where XoE(X I , (XI +x2 )/4) and
q+ (xo, m) # °Vm. This shows that p + (x, n) has a finite number of zeros in
the interval [x I, x 2 ]. Repeating the above argument for the other at most
N - 2 intervals of E* gives the result.
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We now return to the system of polynomials satisfying (III.1) and
(III.14).

LEMMA 10. If q(xj , N - 1) = 0 and p(xJ = 0 then p ± (xi' m, no) = 0
all m. Consequently, (w -N - wN)jf+ (x, no) is continuous on aGo Further
more,

f+(x, no)f_(x, no)=ao(O) q(x, N-l)

x [ao(no)p(x, no + N - 1, no) p(x, no, no)

- a(no)p(x, no - 1, no) p(x, no + N, no)]. (IID3 )

(IH.34)

Proof If q(xj , N - 1) = 0 and p(xj ) = 0, then by Lemma 5 q + (xj ' i) = 0
for all i. But then Xi E R7°(n) which implies that p + (xj ' m, no) = 0 for all m.
Since q_ (x, m) = q + (x, m) on E the result follows for p _ (x, m, no). To
show the second part of the lemma we note that from (HL28) one has for
x E aG\ (W

2N = 1)

w- N- wN ( ) _ S(x)p+(x, m, no) - p_(x, m, no)
p x, m, no -

f + (x, no) ao(N) q(x, N - 1)

where

From the definition of p_ and P+ one finds that IS(x)1 = 1,
x E oG\(W2N = 1). Since

p+(x, m, no)
q(x, N -1) ,

p_(x,m,no)
q(x,N-l) ,

and

are continuous on oG, (W-N-wN)/f+(x, no) is continuous there also. To
find (III.33) we note that p _(x, m, no) can be analytically continued onto
G. Therefore we can use (IIL28) on G. Setting n = no and n = no + N in
(III.28) then multiplying by p +(x, no + N, no) and p+(x, no, no) respectively
and subtracting yields

q + (x, no)[p(x, no + N, no) - w-Np(x, no, no)]

f+(x, no) q+(x, no) q_(x, no)
ao(N) q(x, N 1)



272 GERONIMO AND VAN ASSCHE

Here we have used the facts that p + (x, no + n, no) = q + (x, no + n) and
q±(x,no+N)=w+Nq±(x,no). Now using (11.31) yields -

ao(no+l)q+(x,no) -N
f+(x,no)= (+1)( 1) [p(x,no+N,no)-w p(x,no, no)]. (111.35)q no x,N-

Consequently,

ao(no+ 1)2
f + (x, no)!_(x, no) = q(no+1)(X, N -1) q + (x, no) q _(x, no)

x [p(x, no + N, no)2 +p(x, no, nof - (w N+ w- N)

X p(x, no + N, no) p(x, no, no)]. (III.36)

Since p(x, n, no), p(x, n +N, no), and q(no+1)(X, n - no - 1) satisfy the same
recurrence formula for n;?; no, one can write p(x, n + N, no) =
Ap(x, n, no) + Bq(no+l)(x, n - no - 1). Setting n = no gives A, and setting
n = no + 1 gives B. Now setting n = no + N yields

q(no+ l)(X, N -1)

p(x, no +N, nof - p(x, no, no) p(x, no +2N, no)

Substituting (11.31) into (111.36) and then substituting the above equation
into (111.36) yields

f + (x, no)!_ (x, no) = ao(O) ao(no+ 1) q(x, N - 1)

x [p(x, no + N, no) p(x, no + 1, no)

- p(x, no, no) p(x, no +N + 1, no)]

where the fact that p(x, no + 2N, no), p(x, no + N, no), and p(x, no, no)
satisfy (11.8) has been used. Now incrementing p(x, no + 1, no) and
p(x, no + N + 1, no) down by one using (111.1) gives (111.33).

IV. CONSTRUCTION OF THE MEASURE

We now proceed to construct the measure associated with the three term
recurrence formula (111.1) whose coefficients satisfy (111.3). We will begin
by considering the systems satisfying (III. 1) and (111.14).

THEOREM 5. Suppose the coefficients in (111.1) satisfy (111.14), then the
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measure J.i with respect to which the polynomials p(x, m, no) are orthonormal
can be written as

where

M

dp,=(Jdx+ L Pib(X-XJ
i= j

(IVJ)

and

(IV.2)

filXb 0, no)
Pk= (IV.3)

](Xb no)'

Here E is given by (H.20) and fi + (x, n), n = - 1, 0,..., by (HUl). Xk is such
that XkEE* and](xk,nO)=a(O)p+(Xb -l,no)=O.

Proof Consider the contour F=F juFz, where

F j = {z; Izl = 1, z=!=e±(irc/N)" t= 1, 2, ..., N -l}

and Fz is the union of 2N-2 contours that encircles the 2N - 2 images of E*
under w- j (see Fig. 3).

Now consider the integral (m ~ n),

/=-f -f p(x,m,~o)p+(x,n,no)h'(z)dz=/j+/z, (IVA)
Tl T2 2nif+(x, no)

FIG. 3. The contour r. The set T1 is indicated in thick lines, the contours T 2 are in thin
lines. The arrows indicate the direction (N = 7).
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where h(z) is the inverse mapping of w-t, i.e., z=w- 1(x) and x=h(z).
Since from (ILl 5),

h'(z)= Ijdw-
1
I

dx x~h(z)

=-N(W-N_WN)j(W-1{q'(X,N)- ao(N) q(l)(X,N-2)'} I ),
ao(N + 1) x~h(z)

(IV.5)

it follows from Lemma 10 that I is well defined. We first consider II' Using
(III.28) to eliminate p + (x, n, no) and using the fact that f + (x, no) =
f-(x, no) on r 1 yields

II =_1_ f p(x, m, no)p - (x, n, no) h'(z) dz
2ni T, f _(x, no)

-1 f W[p +' P-] p(x, m, no) p(x, n, no) h'(z) dz (IV.6)
+-- 2'

2ni T, If+ (x, no)1

Writing z = eie in the first integral in the above equation then letting
() -+ - () and using the fact that under this change of variables,
p_(x,n,no)-+p+(x,n,no) for all n while by (IV.5) ei8h'(e i8 )-+
_e- ieh'(e- i8 ) gives

Writing rl=r+ur_, where r+=rl,,{z:Imz~O} and r_=r1"
{z: 1m z :::; O} then performing the same operation on the integral of r _ that
one used on the first integral in (IV.6) yields

-1 J11 =--.
2m T+

W[p +, P_] p(x, m, no) p(x, n, no) h'(z) dz

If+ (x, no)1 2

Now mapping back to the set E and using the fact that on r +

W[p + ,p_] = - iao(N) q(x, N - 1)

x Jr-4-----::{-q(-x-,N-)--(a-o(-N-)/-a-o(-N-+-l-)-)q---::(:"71)-(x-,N-_---:2r-)}::-;;"2

gives

/1 = f p(x, m, no) p(x, n, no) O"(x) dx
E

(IV.7)
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(IV.S)

where O"(x) is given by (IV.2). Now r is a closed contour and one can
evaluate the integral using the residue theorem. The possible singularities
will be at z = 0 and the zeros off+ (x, no) that are inside r. For large x one
has that

p(x, m, no)~(01 aLl) x
m

,

while from (II.24), (II.32), and (11.15) one finds that

p+(x, n, no) nn (.) -n-l
~ a) x .

f+(x, no) . 1=1

Now z = w(x) -1 ~ Cx -1, where C = (n7= 1 aoU)) liN is the capacity of E.
Consequently,

p(x,m,no)p+(x,n,no)h'(z) nm 1 Iln (.) _" - -1- ~: - __ a l em f1zn m

f+(x,n o) I=la(j)i=l

where the fact that h'(z)~ _C/Z 2 has been used. Therefore one sees thatthe
residue at z = 0 is - (jn.m' m:( n. To evaluate the other residues we note
that all the zeros of p + (x, -1, no) inside T are in R~o( -1). Hence using
(III.30), one finds

where f + (h(z 1), no) = 0 and the sum is a finite sum. In order to evaluate the
contribution due to T 2 we make the change of variable z -+ x = h(z). The
contour T j is mapped to the intervals E (circumscribed twice), while the
contour T 2 is mapped to N - 1 contours, each contour containing one
component of E* (see Fig. 4). Therefore

-l-f p(x, m, no)p+(x, n, mol h'(z) dz
2ni T2 f + (x, no)

=_1_ Nfl f p(x, m, no)p+(x, n, no) dx
2ni j =1 D, f+(x, no)

FIG. 4. The images of the contours rand r 2 through the mapping h(z). The thick line is
the set E and the small contours are the images of r2 (N = 7).
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(IY.I0)

where Dj is the contour around E/. The only zeros off+(x, no) that will
contribute are those in R~o( -1) and those in R'j°( -1) such that
f'+(x l , no)=O, Xl ER'j°( -1). Consequently,

-1-f p(x, m, no)p+(x, n, mol h'(z) dz
2ni rz f + (x, no)

" p+(xb 0, no)
= - L..-P(Xb m, no) P(Xb n, no) J'( )

k xk,no

where the minus sign comes from the fact that one is going around the con
tours D j in the clockwise direction. Changing variables in (IV.9) then sub
stituting the result along with (IV.7) and (IV.lO) into (IVA) gives the
theorem.

One may eliminate the ao(N) q(x, N - 1) in (IV.2) using (III.33) to
obtain the result found by Geronimus [16]. Furthermore, in this case we
may analytically continue p _ (x, n, no) on to G and evaluate p + (x, n, no) at
a zero of f+(x, no) using.(III.28). Supposing f+(xb no)=O and q(Xb

N - 1) =F°one finds that

Eliminatingf+(x, no)f_(x, no) using (III.33) gives the formula for the mass
obtained by Geronimus [16]. Geronimus [17] has also obtained

COROLLARY 11. Let Il be the measure associated with (III.3) then
Il(X) = limno~ co Ilno(X) and Il(X) = IlAx) + IlAx), where Ilc(X) is continuous
nondecreasing function whose points of increase are dense in E, and Ild is a
jump function. Let E l contain all the points of discontinuity of Ild and let E;
be the derived set of E" then E; c E.

Proof That Ilno(X) ---+ Il(X) follows from Helly's theorem and the uni
queness of the moment problem. To show the second part let J and Jo be
the infinite Jacobi matrices given by (III.l) and (11.2) respectively and set
J=Jo+Jp, where Jp=J-Jo. By (III.3) Jp is a compact operator and it is
a consequence of a theorem of Weyl [26] that the essential spectrum of J is
the same as the essential spectrum of Jo thus giving the result.

THEOREM 6. If (IIL20) holds then

dll = (J(x) dx+ L p;b(x-xd (IV.lt)
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a(x) = ao(N) q(x, N - 1)

x (4 - {q(x, N) - (ao(N)jao(N + 1)) q(1)(x, N - 2)}2W2 (IV.12)

2n [f+(xW

with x E 1:\(W
2N = 1) and

(IV.13)

for Xi E EC
• if (111.22) holds then the sum over i is finite.

Proof The theorem follows from Theorems 4 and 5, Corollary 3, and
Lemma 8.

THEOREM 7. Suppose 1::=0 In(n + N + 1) k 2(n) < 00 then In a(x) E

L l(J1.e), where J1.e is the equilibrium measure on E, i.e.,

J1.e(B) =_1 f q(x, Ny - (ao(N)jao(N + 1)) q/(l)(x, N - 2) dx

Nn B J4-{q(X,N)- ao~~:\)q(l)(X,N-2)r

=t A(x) dx;

B a Borel subset of E.

Proof From Jensens' theorem one finds

f a(x) f
E1n + A(x)dJ1.e~ Ea(x)dx<oo

and

t In+ A;X) dJ1.e~ t dx< 00

which implies JEIn + a(x) dJ1.'( x) < 00.

We must now show that h In + (lja(x» dJ1.e < 00. Consider the integral
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where f + (x, no) is given by (III.35). Substituting (III.24) into the above
equation and observing that In + exp g(x) = g(x) if g(x) ~ 0 yields

f ( nO (n +N) )
I~C+A E n~ok2(n)N+II_W 2NI(n+N) dJ1e'

Since Sef(x) dJ1e= H" f(h(e ie ))(de/2n) (Sario and Nakai [22J) we find

no f2" (n +N) de
I~C+A n~o k 2(n) 0 N+ II_ei2Ne l (n+N)2n

which gives

no
I ~ C +AC1 L In(n + N + 1) k 2(n).

n=O

Now letting no -+ 00 and then using Corollary 3 and (IY.12) gives the
result.

V. ASYMPTOTIC BEHAVIOR

We begin this section by deriving a formula first obtained by Geronimus
[16].

LEMMA 11. Let PI(X, n) be any solution of (IIU) then

PI(X, n + 2N) p(n+ I)(X, N -1)

= PI(X, n + N)p(n+ I)(X, 2N -1)

a(n + 1) ( ) (n + N + 1)( N _ 1) (V.1)
a(n+N+l)PI x,n P x, .

Proof We will begin by showing that the above formula is true for
p(x, n). Since p(x, n), p(m)(x, n - m), and p(m+ I)(X, n - m -1) are solutions
of (III.1) one finds

p(x, n) = p(x, m)p(m)(x, n -m)

a(m) ( I) (m+I)( 1)- a(m+l)P x,m- p x,n-m-. (V.2)

Multiplying the above equation with n = n + Nand m = n + 1, and with



ORTHOGONAL POLYNOMIALS 279

(VA)

n = n + 2N and m = n + 1 by p(n+ l)(X, 2N -1) and p(n+ l)(X, N -1) respec
tively and then subtracting the resulting equations yields

p(x, n +N) p(n+ l)(X, 2N - 1) - p(x, n +2N) p(n+ l)(X, N -1)

a(n + 1)
= a(n +2/(x, n){p(n+2)(x, 2N - 2) p(n+ l)(X, N -1)

- p(n+2)(x, N - 2) p(n+ l)(X, 2N - 1)}. (V.3)

By analogy with (V.2) one has

pin + m)(X, 2N _ m) = pin + m)(X, N _ m) p(n + N)(X, N)

a(N+n) (n+m)(X N-m-1)
a(N+n+1)P ,

X p(n+N+l)(x,N_l).

Multiplying the above equation with m = 1, and with m = 2 by
p(n+2)(x, N - 2) and p(n+ l)(X, N -1) respectively and then subtracting the
resulting equations yields

p(n+2)(X, 2N - 2) p(n+ l)(X, N -1) - p(n+ l)(X, 2N - 1) p(n+ 2)(X, N - 2)

a(n +2) (n+N+ l)(X N -1). (V.5)
a(N+n+1)P ,

In the above equation the fact that W[p(n+l),p(n+2)]=_a(n+2) has
been used. Inserting (V.5) into (V.3) gives (V.l) for pl(x,n)=p(x,n). Using
similar arguments one finds that p(l)(x, n + 2N - 1), p(l)(x, n + N - 1), and
p(l)(x, n - 1) satisfy (V.l) and, since all solutions of (III.l) can be written
as a linear combination of p(x, n) and p(l)(x, ny, the lemma is proved.

It is possible to convert (V.l) into two recurrence relations whenever
(III.3) holds. The following lemma is a generalization of a result given by
Geronimo and Case [8].

LEMMA 12. Equations (IILl) and (III.2) with recurrence coefficients that
satisfy (III.3) are equivalent to the two following relations

ao(n + 1)p(n+ l)(X, N -1)
p(x,n+N)= a(n+1) Q(n+l)(x,N-1)

X {(w+N-B(n,x))p(x,n)+w±N~±(x,n)}

640/46/3-5
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and

where
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+ aO(n + l)p(n+1)(X, N -1)
1jJ-(x, n + N) = a(n + 1) q(n+ 1)(x, N -1)

x {W±NIjJ±(X,n) + [(1- (:O~::\\
q(n+1)(X,N_l))2) CfN ] }

x (+1)( ) w -B(n,x)p(x,n).(V.7)
p n x, N-l

- a(n+l)
B(n, x) = wN+ w- N- q(n+1)(x, N -1)

ao(n + 1)

{
p(n)(x,N) a(n) p(n-N+1)(X,N-2)}

X p(n+1)(x,N-l)- a(n+l)p(n-N+1)(x,N-l) . (V.8)

and 1jJ±(x, 0) = p(x, 0) = 1.

Proof Solve (V.6) for IjJ ± (x, n) and substitute this result into (V.7).
The resulting equation is (V.1), where one replaces pIn + l)(X, 2N - 1) by
(VA) with m = 1.

If one subtracts (V.6) from (V.7) one finds

+ a(n+l) q(n+1)(x,N-l) CfN
1jJ-(x, n +N) = p(x, n + N) - ao(n + 1) p(n+1)(x, N -1) w p(x, n). (Y.9)

Consequently for the system satisfying (111.14) one finds, using (111.35),
that

(V.10)

This leads to

THEOREM 8. Suppose that (111.20) is fulfilled, then for any integer j the
following limit holds:

I' -kN( kN+')- q(j+1)(x,N-l)f+(x)
1m w p x, ] - N N

k-->oo aoU+l)q+(x,j)[w -w- ]

uniformly on closed subsets of G.

Proof If (111.20) is fulfilled we can let no --+ 00 in G to obtain

f ( ) - l' ao(no + 1) q + (x, no) N,J, + ( )
+ x - 1m (no+1)( 1) w 'I' x, no·no--> 00 q x, N-

(V.11 )
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Now setting no = kN +j in the above equation and using the properties of
the periodic system one finds

(V.12)

If one subtracts the two equations given by (V.6) from each other and then
multiplies the result by w -kN one has

-kN . W-(k-l)NljJ+ (x, kN +j) - W-(k+ l)NljJ- (x, kN +j)
w p(x,kN+j)= N -N .

W -w

(V.13)

Consequently, the result will be proved if one can show that
1imk~ CD W-(k+ l)NljJ -(x, kN +j) = 0 uniformly on closed subsets of G.
Finding the analog of (IIL8) for p(n+ l)(X, N - 1) shows that

. p(kN+J+l)(x,N_l)
hm. = 1
k~ CD qU+ l)(X, N-1)

uniformly on closed subsets of G\{zeros of q(J+ 1)(X, N -I)}. Thus, from
(Y.9) and (IlUO) we see that the result will be demonstrated if one can
show that

lim W-(k+2)Np (X, (k + 1) N + s) W-(k+ I)Np (X, kN + s) = 0
k~ CD

uniformly on closed subsets of G. Now from (IlL8) we have

W-(k+2)Np (X, (k + 1) N + s) - W-(k+ I)Np (X, kN + s)

= W-(k+2)Nq(X, (k + 1) N + s) - W-(k+ I)Nq(X, kN + s)

kN+s-l
+ L [W-(k+2)Nk 1(x, n, (k + 1) N + s)

(k+ l)N +s-1
+ L w-(k+2)Nk1(x,n,(k+l)N+s)p(x,n). (V.

n~kN+s

From (IlUO) and (III.12) we see that the last term goes to zero as k tends
to infinity uniformly on closed subsets of G. From (II.24) and (II.30) we
find

jw-(k+2)Nq(X, (k + 1) N +s) - W-(k+ I)Nq(X, kN + s)1 = IW-(2k+2)Nq +(x,

::( D IW- 2kN I, (V.15)
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which leaves only the second term to be discussed. From (111.6) and (111.9)
one finds

W-(k+2)Nk 1(x, n, (k + 1) N + s) - W-(k+ l)Nk
1
(x, n, kN + s)

= (bO(~)-bl(~)) w-(k+2)N{q(n+l)(x, (k+ 1) N +s-n-l)
ao n+

- wNq(n+ I l(X, kN+ s-n -I)}

+ ao(n + 1) {I _ a
2
(n + 1)} W-(k+ 2)N{q(n + 2)(X, (k + 1) N + s - n - 2)

ao(n+2) a~(n+l)

- wNq(n+2 l(x,kN+s-n-2)}. (V.16)

Now setting n = mM +p and using (11.22) and (11.23) yields

[W-(k+2)Nk
1
(x, n, (k+ 1) N +s)- W-(k+l)Nk 1(x, n, kN +s)[

:::; {!bo(n)-b(n)!+ao(n+l)ll_a2(n+l)I}DW_kN. (Y.l?)
ao(n-l) ao(n+2) a~(n+l)

Substituting this result into the second term in (V.14) then using (111.10)
gives the result.

On the spectrum we have, from (111.28), (111.21), Theorem 1 and the
properties of w(x) and h(z).

THEOREM 8. If (III.20) holds then for every x E E\ (W 2N = 1)

. [P(X, kN +s) J
hm I ( )[ 8mr(x)ao(N)q(x,N-l)
k~ 00 q + X,S

J[ { a (N) }2J 1/2
X 4 - q(x, N) - ao(~+ 1) q(l)(x, N - 2)

- cos(kNe + r(e, s))J= 0,

where e= arg w(x) and r(e, s) = -argf+(h(eiO
)) + arg q +(h(e ie ), s) + n12.

Furthermore the convergence is uniform on compact subsets of E\ (W 2N = 1).
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