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Given the coefficients in the three term recurrence relation satisfied by orthogona:
polynomials, we investigate the properties of those classes of polynomials whose
cocflicients are asymptotically periodic. Assuming a rate of convergence of the coef-
ficients to their asymptotic values, we construct the measure with respect to which
the polynomials arc orthogonal and discuss their asymptotic behavior. o j98s
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INTRODUCTION

Let x4 be a positive measure on the real line with finite moments and
infinite support, and let {p(x,n)}= ,, p(x,n)=k,x"+..k,>0, be the
system of orthonormal polynomials associated with x. The polynomials
p(x. n) satisfy the recurrence formula

a(n+ 1y p(x,n+ 1)+ b(n) plx, n)+aln) p{x, n — 1y = xp{x, n),
plx, —1)=0, plx,0)=1.
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252 GERONIMO AND VAN ASSCHE

Recently there has been a great deal of interest [1-13] in investigating
the nature of the relationship between the orthogonal polynomials, the
recurrence coefficients, and the measure.

Here we investigate the consequences of assuming that the coefficients in
the recurrence formula are asymptotically periodic (see (I11.3)). This
problem is an old one and certain aspects of it were considered by Stieltjes
[14], Perron [15], and later by Geronimus [16-18] (see [18] for further
referenices to the Russian literature).

We proceed as follows: in Section II we consider the case where the coef-
ficients in the recurrence formula form periodic sequences. The Green’s
function (see also Geronimus [17]) is constructed and its analytic proper-
ties discussed. Using the Green’s function we construct a function which is
conformal in a neighborhood of oo and maps oo to O (see Szegd [19,
Chap. XVI] and Bamnsley, Geronimo, and Harrington [20]). Then
(Sect. IIT) we consider the general case as a perturbation of the periodic
case. The techniques of scattering theory are introduced and used to
investigate the properties of the general systemn when it is assumed that the
coefficients converge to their asymptotic values at certain preassigned rates.
In Section IV the measure, with respect to which the polynomials satisfying
the recurrence formula are orthonormal, is constructed and the properties
of the measure are investigated. It is shown that under certain conditions, it
falls into the Szegd class. Finally in Section V we investigate the asymptotic
behavior of the orthogonal polynomials.

II. THE PeRIODIC CASE

Given ag(n+1)>0 and by(n)eR for n=0,1,2,. and assuming the
periodicity condition

ag{n+ N)=ay(n), n=1,2,..,

bo(n+ N)=bo(n), n=0,1,2,., (1)
N2=1, we form the following three term recurrence formula
ag(n+1) q(x, n+ 1)+ bo(n) g(x, n)
+ ay(n) g(x, n—1)=xq(x, n), n=0,1,2,. (11.2)
(here we take a4(0) =aq(N)). If we impose the boundary condition
g(x, 0)=1, q(x, —1)=0, (11.3)

then g(x, n) is a polynomial of degree n with leading coefficient positive
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and we know from Favard [21], that there exists a probability measure y,
such that

jw q(x, n) g(x, m) duo =29, (I1.4)

We can also associate with the above coefficients the kth associated
polynomials ¢*)(x, n) satisfying

ag(n:+k+1) gMx, n+1) +bo(n +k) ¢¥(x, n) + ag(n+ k) gO(x. n—1)
= Xq(k)(x5 n)a n= 0, 1, 2,...,

" . (1L5)
g¥(x,0)=1, ¢¥(x, —1)=0.

Given any two solutions ¢, g, of (II.2), we define the Wronskian
Wlgi,q,] as

Wigqy, g:1=ao(n+ D) {q,(x, n+1) g5(x, n) — q,(x, n) g,{x, n+ 1)},  (I11.6)

which is independent of n. Furthermore from the general theory of second-
order linear difference equations one finds that two solutions ¢,, g, of (I11.2}
are linearly independent in » iff W[q,, ¢,] #0.

As a first application of (11.6) we notice

Wlg, ¢V ] =ao(n+Dq(x,n+1) g"(x, n—1) = q(x, n) g (x, n)]
= —a,(1) #0, (IL7)

which implies that g(x,n) and ¢‘"(x,n) are two linearly independent
solutions of (I1.2).

To investigate the consequences of the periodicity condition (I1.1) we
begin by constructing a recurrence relation that relates g{(x, n+2N) and
g(x, n+ N) to g(x, n).

LemMa 1. Let q,(x, n) be any solution of (11.2) and let the recurrence
coefficients satisfy (1L.1), then

ao(N
¢ (%, n+ 2N) = {q(x, N)—% d(x, N—2>} 0+ N)
— g,(x, n), n=0,1,2,... (11.8)

Proof. Because of the periodicity of the coefficients, we see that
g(x, n+ N) and ¢""(x, n+ N—1) will again be solutions of (I1.2) so that,

g(x, n+ N)=Aq(x,n)+ BgV(x, n—1) (1L9)
gP(x,n+ N—1)=Cq(x, n)+ Dg'V(x,n—1) (11.10}



254 GERONIMO AND VAN ASSCHE

where 4, B, C, and D do not depend on n. Setting » equal to 0 and —1 we
find

ao(N)
Azq(xaN)s B= _—_—q(xaN_l),
ao(N+1) (IL11)
_ (D _ _ @) _
C=4q"(x, N—1), D ao(N+1)q {(x, N—2).

Letting n — n+ N in (I1.9) then eliminating ¢*(x, n+ N — 1) using (IL.10)
and ¢'(x, n — 1), using (IL5) yields

q(x,n+2N)=(A4+ D) q(x,n+ N)+(BC— AD) q(x, n).

By means of (IL.7) one finds that BC-AD = —1 and this coupled with
(IL.11) gives (11.8) for ¢. Using a similar procedure on (11.10) one arrives at
(IL4) for ¢'V and since all the solutions of (IL.2) can be written as a linear
combination of ¢ and ¢‘*) the result follows.

COROLLARY 1. Given (I1.1) and ¢*(x, n), k >0 satisfying (IL.5) one has
for k=0,

) B al(N+k) et 1) _
q"(x, N) ———aO(N+k+l)q (x, N—-2)
_ @) _

= gq(x, N) ao(N+1)q (x, N—2).

Proof. The polynomials ¢'*)(x,n) satisfy a recurrence relation with
periodic coefficients and since g%’ and ¢%*! are linearly independent
solutions of (IL.5) one finds

ao(N+k) iy }
ao(N+k+l)q (x N—2)

xq“x, n+N)—q©(x,n),  n=0,1,2,...

¢+ 2N)= g N) -

On the other hand ¢*)(x, n — k) also satisfies (I1.2) and it is a consequence
of Lemma 1 with n replaced by n+k that ¢*)(x, n) satisfies (IL.8). The
identification of both relations then gives the corollary.

Remark 1. Relation (IL.8) is again a recurrence relation but with coef-
ficients constant in n. Certain solutions of this equation will play a fun-
damental role in what is to follow.
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Applying the method of characteristic equations to (11.8) we find

ao(N)

“ZN_{Q(X’ M=v1D

g, N—2}} oM+ 1=0. (IL12)

Splitting the above equation into two equations of degree ¥, we define

ao(N)

N N_l
wi(x)=w —E{Q(X, N)—m

g(x, N-2) +p(x)} (11.13)
where

oV 2 172
p(x)z{(q(x, N)—a:(’—]é:l—)gm(x,N-z)) —4} (11.14)

with the square root chosen such that

Since the constant term in (IL12) is one, we have

,7N__]; _ aO(N) 1) . _ 15)
W —2{q(x,N) —_aO(N+1)q( (x, N—2) ,o(x)} (11.15)

We now examine p(x)?; setting

ao(N)

D, N—2)+ I1.16)
aO(N-}—l)q (X, )—2 ( 7

Qi(x’ N)=q(x, N)—‘

we denote the zeros of Q. (x, N) by {x*}~,. Let x, y_, and x{}) _, be the
zeros of g(x, N—1) and ¢'"(x, N—1) respectively, ordered so that
XjN—1 < Xjt 1. n—1s and x_](;l}\}Al < xj('i)l,Nfb ]= 1, 2,..., N-2.

Lemma 2 (cf. Geronimus [16], Kac and Van Moerbeke [24], Van
Moerbeke [257). Al the zeros of p(x)* are real (but not necessarily sim-

ple) and, ordering the zeros of Q (X} as x* <x7 | one has,

— 1 —
Xy >XN ZXy_1n_1 x§V)—1,N—1 ZX5 > Xy 2 Xn_oN_1
1 1 LN N1
XG> Zxp v X 2 x> (IL.17)

Furthermore, if \q(x;y_1, N)l =1, then either @ (x, N) or Q_{(x, N} may
have a double zero.
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Proof. By means of (I1.7) one finds that,
ao(N) g(x;5 -1, N) q(l)(xj,N—la N—2)=—ay(N+1), (IL.18)

so that

Qi(xj,N~1> N)=q(xj,N—1a N)+ 2. (IL.19)

—
‘I(xj,an N)

Since the zeros of g(x, N) and g¢g(x, N—1) interlace one finds that
sgn g(x;y_1, N)=(—1)""/. The above remarks coupled with the fact that
|x + 1/x| 2 2 for x real imply that @, (x, N) change sign N— 1 times, which
in turn implies, since they are real polynomials, the reality of their zeros
and the interlacing of their zeros with those of ¢(x, N —1). Since the zeros
of ¢M(x, N—1) and ¢(x, N) interlace an argument similar to the one above
gives the result for ¢'V(x, N—1). To arrive at (IL.17) we note that for x
large

ao(N)

- 1) N=2
anind & )

q(x, N)

is positive, which implies for large enough x, @  (x, N)> 0. Consequently
Xt <xy.Atxy 1xy_ 1, Qi(xy_3 5 1,N)<0 so that O, (x, N—1) must
have a zero greater than or at xy_, 5. Since 0 (x, N)—Q _(x, N)=4,
the next zero of Q,(x, N) is a zero of O, (x, N) which, because of the
interlacing property, will be before x,_, x ; and on or after x, ; y_;. At
Xy—on-1o Qe(Xn_an_1,N)Z0 s0 that xy_, 5 ;<xy_;<xy_;. This
establishes (IL17). If |g(x; 5, N)| =1 for some j, then from (IL19), x,
will be a zero of either @ , (x, N) or @_(x, N) and we sec from (IL.17) that
Q. (x, N) may have a double zero.

We now define the set E:
E=[xf,x510[xy_ 1, xf_Jo - o[, %" (11.20)
which is composed of at most N disjoint intervals, the set E*:
E*=(x{_, x5 U (X5 0 xy_ U U™, x4, (I120A)

and the polynomial U(x, N—1)=Q’ (x, N)=Q’_(x, N). From the above
definitions, it is obvious that in each of the above open intervals defining
E* that is not empty there will be one and only one zero of U(x, N—1)
(see Fig. 1).

Let U be the unit circle, D be the open unit disk, and D=D U U. Let €
be the extended complex plane and G=C\E Let g(z) be the Green’s
function for G, that is g(z) is harmonic in G except at oo where g(z) —In|z|
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Q+(X7N> 1If

R
m
*

\h Q-(x,N)

x zeros of Lix,N—""

Fi. i. Construction of F and E* The £ is in bold line, the set E* are the intervals in
between (N =7).

is harmonic, and lim._ . g(z)=0. We now form the function g(z) by
adding ih, to g(z), h a conjugate harmonic function of g(z) chosen so that
£(z) is a multivalued analytic function on G except at x, where g(z) —In:z
is analytic. £(z) has the property that lim. _, . Re g(z) =0. In our case onc
secs that

and |{w(z)} =1, ze E and therefore we may choose an appropriate branch
of the Nth root so that ¢(z) =In w(z). Thus, the capacity of E is given by

N LN
C(E)= < [1 a(,(z')> > 0.
i1

Since |w(z)| =1, z € F we see that w(z) maps G into the component of the
complement of U containing oc. However, because G is in general not a
stimply connected region, w(z) is in general not single valued. For large
enough z, w(z) is conformal and we lct ¥ be the inverse of w. For cach
0 e [0, 2n) we define ry () to be the minimum number > 1 such that 7 may
be analytically continued from x along Ry= {re¢” | ¥ >r,} (physically they
are the lines of force). The set s={J,7(Ry) is called the Green's star
domain for G (see Sario and Nakai [22]). In our casc

, w(z) U(z. N~ 1}
w'(z) :—T—



258 GERONIMO AND VAN ASSCHE

P 1/w[E]

4

Fi1G. 2. The image of G under the mapping 1/w (N=7).

and w'(z)=0 (zeG) at the zeroes of U(z, N—1) that are in E*. Con-
sequently s= (Eu E*)°. On s, w(z) is conformal and maps s to the exterior
of U minus radial segments emanating from the roots of unity given by
(I11.13) and ending at the image of one of the zeros of U(z, N—1) under
w(z). In Fig. 2, we have drawn 1/w(s).

Setting

R(z)= (q(z, N) —;—j?&—?l—) 4, N—2)> 4,

we have by the convention adopted above, /R(x+#0)= +i./—R(x),

x € E. Let F be the two sheeted Riemann surface which has cuts along the
disconnected segments E with branch points at the ends of these segments.
Then F is of genus at most N—1 and G is one sheet of F. Denoting the
other sheet as G’ one has that
. z

lim &N)=—k,\, on (.

zow Z
With this we can now analyticaily continue w” and w~" onto G'.

We now return to the solutions of (IL5).

LemMAa 3. Let ¢'9(x, n) satisfy (IL5) then

A(n+N)
N+{1—w=2¥ (n+ N)

tw="q(x, n)| < (I1.21)

where A is a positive constant.

Proof. From Lemma 1 and Corollary 1, the sequence g*(k)=
g x, kN +s) (i, N, s fixed) satisfies the relation

ag(N)

q*(k+ 1)={q(x, N)—m

d(x, N'—Z)} ¢*(k)— gk —1).
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Since w™*¥ and w*" arc two linearly independent solutions of the above
equation when p(x) #0, one has

g*(k)=C,w*" + Cyw =Y,

Setting k=0 and & =1, one easily finds,

0 1 R - .
W (kN )C](I)(X, kN+5)= v {q(l,(x‘ S)(W —-2kN w 2:’\/)
—w

1
+w Mg, N+s)(1—w *Y)1 (11.22)
Since lim, _ (x/w) < oo one has

K= max  max suplw ‘¢"(x,s) <. (11.23)

0<iaNOSs<2N 1

and using this in (11.22) yiclds

e UV =950 kN + )

K
S1n 26N 3N gy kN
7 {w 1" i+l —m [}.

<
T —w

Now one can use the bound

2n

n

11—z
<C
!1—:2| 1+ 1—=z%n
to obtain

k+1
A— t\-
I+il—w" " (k+ 1)

o RV Vg(x, kN +5)1 <

where 4 =2CK, from which the gencral bound foilows.

THEOREM 1. Set
g.(x,n)=q(x,n+ N)—wg(x,n) (I11.24)
and
g _(x,n)y=q(x,n+ N)—w “Yg(x, n), {I1.25)

then g ,(x, n) are two solutions of (11.2) such that g, (x,ny=w""¢ . (x, n).
where ¢, (x, n) is periodic in n of period N. These two solutions are linearly
independent in n for fixed x iff g(x, N - 1)#0 and w*" # 1.

640.46.3-4
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Proof. Since both g(x,n+ N) and g(x, n) are solutions of (IL.2) one
easily sees that ¢, (x, n) are also solutions. From Lemma 1, one has

q(x, n+2N) = (w" +w™") q(x, n+ N) — g(x, n). (11.26)

Letting » — N+ » in (I1.24) and (I1.25) then substituting the result into the
above equation yields

g.(x,n+N)=w¥ g (x, n). (IL.27)
From (I1.6) one finds
WIlq.»>q-1=adN)q(x, N=1)[w™" —w"] (11.28)
which gives the theorem.
LemMa 4. For any n, q . (x,n) and q_(x, n) are (a) analytic and single

valued in G— {0}, (b) real for x real ¢E, and (c) g, (x,n)=q_(x,n) x€E.
Furthermore,

lw=¥""q_(x,n)| <2K, xeC, (I1.29)
and

lw"=~+2q , (x,n)| <D, xeC. (I1.30)

Proof. The analytic properties follow from the definition of ¢, and the

following facts: (a) w” and w~" are single valued and analytic on

G—{x}, (b)w" and w™" are real for x real x¢ E, and (c) w"=w"",

xe E. (11.29) follows by writing n=kN + s then using (I1.27) and (IL.23).
To prove (I1.30) one has that

q.(x,n) q_(x,n)=q(x, n+N)*—(w" +w=") g(x,n+ N) q(x, n)
+ q(x, n)
= q(x’ n-+ N)z— q(xa n+ 2N) CI(X, n)9
where Lemma 1 has been used. Now ¢'"*V(x, n—m—1) is a solution of

(I1.2) and can be written as a linear combination of g(x, n) and ¢(x, n + N),
ie.,

agm+1) 1
ao(N)  g(x, N~1)

X [q(xa m+N) q(xa n)_q(xz m) q(xa n+N)]

g, n—m—1)=
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Replacing n by m + N and then setting m = n yields

gix, N—1) " D(x, N— 1)=%]’;;)
0

x {g(x,n+ Ny —q(x. n+2N) g(x, n)}.
Consequently,

ay(N)

_ CN=—1y g ' Px, N=1). 11.31
ao(n+1)q(x, Vg (x, J R )

q.(x,n)q_(x,n)=
Now using the fact that ¢ _(x, n})=O(w”* "), Lemma 3 gives (I1.30).
Equation (I1.31) leads to the following:

LemMa 5. The zeros of q_(x, kN+s)and q_(x, kN+5), k=0,1,., 5=
0. L. N—1, are real and may only be at the zeros of g(x, N — 1) and/or the
zeros of qU*(x, N=1). Furthermore, a zero x; of ¢(x, N—1) will be a
common zero of q . (x, n) for all n if and only if iq(x;, N)| = 1.

Proof. Only the last part of the lemma needs to be demonstrated. We
note that x, will be a common zero of g.(x, n) for ali » if and only if
g.(x;,0)=0. From (I1.24) and (I1.13), onc sees that this can only happen
if
ay(N)

TN

g (x;, N—2)=p(x;).
Since

] _@N) . )2_ 2
<Q(«\1,N)+ao(N+])q (x,, N=2}] =plx;).

we see that ¢ . (x;,0)=0 if and only if

ag(N)

_AotM) e N—2
TS TRAR S )

g(x;, N)+
and p(x,) have the same sign. Since the signs of g(x;, N) and p(x;) are the
same, (I1.7) shows that ¢, (x,,0)=0 if and only if {g{x;, N}| = 1.

We note that from (I1.25) and (11.31), one finds for large x that

q.(x,n) 5!
g(x, N—1) b aoiy

(11.32)

640,46.34%
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III. THE GENERAL CASE

We now suppose we are given the recurrence relation

an+ 1) p(x,n+ 1)+ b(n) p(x, n) + a(n) p(x,n—1)
=xp(x, n), n=0,1,2,.,
p(x, —1)=0, p(x, 0)=1

with a(n) >0 and b(n) € R such that

lim {a(n)— ao(n)! =0,

n— oo

lim [b(n) — bo(n)| =0,

-~ 0O

(ITL1)
(IT1.2)

(IT1.3)

where the sequences aq(n) and bgy(n) satisfy (IL.1). By Favard’s theorem, the
polynomials p(x, n) will be orthogonal with respect to some measure on

the real line. The kth associated polynomials p*(x, n) satisfy
an+k+1)p®(x, n+ 1)+ b(n+k) p*(x, n)
+a(n+k)p®P(x,n—1)
=xp®(x,n), n=0,1,2.,k>0.

(111.4)

(We will suppress the superscript for £ =0.) Let G,, G, be the solutions of

ay(mn+1)Gx,n+ 1, m)+ bo(n) Gx, n,m)+ay(n) G{x,n—1, m)

— xG{x,n,m)=9,,, i=1, 2,

with boundary conditions
G,(x,n,m)=0, n=m,

G2(xa n, m)=0= ngm,

then (Geronimo [97], Atkinson [23])

ag(n+1) Gy(x,n,m)=q"+*V(x,m—n—1), —1<n<m,
=0, m<n,
and
ag(m+1) Gy(x, n,m)=q""* Y(x,n—m—1), —1<m<n,

=0, nsm.

(IIL.5)

(IIL6)

(IIL7)
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THEOREM 2. Ler p(x, n) satisfy (111.1) and (111.2) and let

. %oali)
plx, n)= [I 2ol plx.n),
then
=1
plx,m)y=gq(x,m)+ > k(x, n m)plx, n {111.8}
n=-0
where

ki (x,n,m)= {hy(n)—b(n)} G (x,n, m)

a*(n+1)

G(x, . m). 111.9}
a(z)(n+l) W(x,n+ 1, m) {

+ag(n+ l){l —

N~

Furthermore, for xeC,

A < Am+ N)
W x,m)i < —
MRS N T IS P (m+ N
mo | n_+_“7v
¢ . {I11.10
X eXp {A EO k(n)N-é— [T w2 (n+:\/’)} ! 0)

where A is a positive constant and

agn+1); a(n+1 ‘
ao(n+7) ai(n+1)|

bo(n) - h(n!+
agln+1)

kiny=

(TIL11)

Proof. Equation (II1.8) has already been given in Geronimo [97 and
can easily be derived using standard manipulations. To obtain the bound
(I11.10) onc begins by substituting (1IL6) into (I11.9) then multiplving by
[w: " " and using Lemma 3 which yields

m—n+ N

[E -Lm---N)k X, h, <Ak BEY
M 1(x, n, m)| (n) N+il+w N (m—n+N)

(H1.12)
m+ N

N+[1—w2(m+N)

< Ak(n)

Now using the method of successive approximations on (IIL.8) we may
write

|W| m ,m): Z g,(’\-’ n’l) (11113)

i=0
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where
golx, m)=|w|] " q(x, m)

and

m--1
glx,m)y="3Y |wl~" "k (x,n,m) g, (x,n).
n=0

From Lemma 3, one has that

A(m+N)
N+|l—w 2 (m+N)

[go(x, m)| <

and by induction that

| g.(x. m)| < A(m+ N) 1 { m_ ! k((n)(n+N) }‘
i ’ ~ ) .

. -4
N+|1—w= 2 (m+N)i! ZN+|1—w‘2N|(n+N

n—=0"°

Taking the magnitude of (111.13) then using the above two cquations gives
(I11.10).

We now search for solutions p , (x, n) such that

lim |p,(x,n)—q,(x,n)]=0.

n— x

To this end we temporarily impose the following condition on coefficients

a(ng+j+ 1)y=ay(ng+j+1)
CraT e (I1L.14)
b(ng +j) = bolng +) Jj=0,1,2,..

We denote the solutions of (IIL.1), (IIL.2), and (I11.14) by p(x, m; n,) and
we define p.(x,m;n,) as a solution of (ITL.1) such that
P (%, 15 1) = q 4 (x, m) for m>n.

LEMMA 6. Let p, (x, m;n,) be defined as above and set

. = a(i)
B i(x,myng)= ~p . (x, m;ng)
romim)= 1 206 :

then

no
Po(x,mng)=gq,(x,m)+ Y kyx,n,m)p, (x,nny) (IL15)

n=m+1



ORTHOGONAL POLYNOMIALS 265
where

kZ(x9 n, m)= {b()(n) —_b(n)} Gz(X, n, m)
(HL16}

2

n))
5 Golx, n— 1, m)
aa(n)/% ?

+ ay(n) {1 —

(Here 3/ _.f,=0 for i>j.)
Proof. To find (I1I.15) one begins by multiplying (If1.1) by

= a(i)

it (l()(i)

)

and (I1L5) by p_(x, n, ny) then subtracting and summing the result from 0
to oc. This yields using the appropriate boundary condition,
7. (x, m; i)

=aglng+ 1){q, (x, n)) Gs(x, ng+ 1, m)—gq . (x, ng+ 1) G5(x, ny, m};

"o
+ Y ky(x,nom)p_(x, m;ng). (TIL.19)

no.om+1

The first term on the right-hand side is W{G,, ¢ . ] which cquals g _ (x, a1
and gives (I1L.15).

THEOREM 3. Let H=G UG and suppose
Y ky(n) < (T11.20)
n—-0

where

n+1)

ky(n)='by(n)— b(n)) +a0(n+1)\ ai(n+1)|

then there exists a solution p ,(x,n) of (11L.1) such that w “p . (x, m) is
analytic and single valued on G and continuous on H\(w>> =1). Furthermore

Iim [wk D¥p (x, m)—q , (x, m))| =0. m=kN+s, (111.21)

m

uniformly on closed subsets of H\(w*¥=1). If

i (n+ N)ky(n)< (111.22)

n=10

then w~"p _(x, n) is continuous on H and (I11.21) converges uniformly there.
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Proof. We begin formally by letting n, — oo in (IIL.15). This gives us an
integral equation for p,(x,n). Now using the method of successive
approximations we write

W=DV (x,m)=Y g/x, m) (I11.23)
i—0

where m=kN +3,

W(k~1)N

Zolx, m)= q.(x, m)

and

gi(xz m) = Z Wm—nk2(x7 ny m) gi— 1(x> n)'

n=m+1
Since |w| =1 on H, it follows from Lemma 4 that,

|g0(x7 m)|<|ws-+2g'0(x,m)|<D’ m=kN+S

Now using (I1L16), (II1.7), Lemma 3, the fact that the a(i)’s are strictly
bounded away from zero, and the above inequality yields

(n+ N)

&<D ) AkZ(”)N+ 11—w=N (n+ N)

n=m+1

where again the fact that [w '] <1 on H has been used. By induction one
finds,

1 R
@l<pg

n=m+1

(n+N) }i
N+ 1—w-2N (ntN)

which upon substitution into (1I1.15) (with ny,= c0) gives

w9 (x,m) = Y &, (111.24)
i=0
P (n+N) }
<Dexp {A,,:%sz(n)NHl—w‘le TSl

Since each of the ¢, are analytic and single valued on G and continuous on
H, (I11.20) and (I11.24) imply that (I11.23) converges uniformly on closed
subsets of H\(w?=1). Consequently, w*~Y*p_ (x,m), m=kN+s is
analytic and single valued on G and continuous on H\(w*" = 1). If (I11.22)
holds then (III.23) converges uniformly on H giving the continuity of
w#*=DNp (x, m) on H. Subtracting g (x, m) from both sides of (IIL.15)
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(after sctting n, = oc) and then taking magnitudes and using (I11.24) shows
that (I11.21) converges uniformly on closed subscts of H\(w?Y=1) if one
has (111.20), while (II1.21) converges uniformly on H if one has (I111.22}.

CororrLary 3. If (IT1.20) holds then

lim [w® U™ (x.m)—p . (x.m, n,) =0, m=kN+s (11125}

ne s

uniformly on closed subsets of H\{w>™=1). If (I11.22) holds then (I11.25)
converges uniformly on H.

Proof. Subtracting the integral equation for p  (x, m} from (11113}
yields

(k

w DNB (o m) — p(x, i)

= Y kylx,nm)w® "p (xin)

n—ng-1
ne
+ Y kyxomom)w'* UM (xA) iy, ng)).
n- |l

The method of successive approximations now gives

i“.(k 1)\([ (x,m)—p . (x, m. ig))
o~ kz(n)(n+:"\!') Codk N A . |
BRI e e T A
O [+ N)
A 2 2N
XX {,_nz,.,“” N W T M

from which the conclusions of the corollary follow.

COROLLARY 4. Let H' =G oG, if (H1.20) holds then there exists a
solution of (111.1) such that

hm |“.(| ....k)v\'([} (_V, ’7) ‘] (_"’ ”))i = 0
uniformly on closed sets of H'\(w*" = T =1). If (111.22) holds the convergence is

uniform on H'. On E. p_(x,n)= ( n).

Proof. Letting w¥—w *, g, ,(x,m)—>q (x,m), and p(x,m)--
p (x.m) in the above discussion gives the first two assertions of the
corollary. The third follows from integral equations satisfied by p , (x, )
and the facts that on E, w¥=w “and ¢ .(x,n)=q (x, n)
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LemMMA 7. Given (111.20) then for x ¢ E,

an+Dp(xn+D)p(x,n)=p. (x,n+1)p.(x,n)]

=% Y Ip i (I11.26)
an+Dp (x,n+)p (x,n) —p,(x,n+1) p,(x,n)]
= i pa(x i) (111.27)

For xe E\(w*" = 1), one finds

f,(X)p_'_(X, n)—f+(x)p,(x, n)
ao(0) g(x, N—1)[w ="~ w"]

plx,n)= (I11.28)

where
fe(x)y=WIlp,p:1=a(0)p (x, —1). (I11.29)

Proof. Since p (x, n) satisfies (II1.1), (II1.26) and (II1.27) follow from
routine manipulations and the facts that lim,_ ,p,(x,n)=0 and
lim,_, o, p.(x,n) =0 for x¢ E. To show (III.28) we note that p  (x, n) and
p_(x,n) are solutions of (IIL.1) that are continuous for xeE. Since
Wip_,p.1=a40)q(x, N—1)[w~¥—w"], we see that p_ and p_ are
linearly independent for xe E\(w*¥=1). Writing p(x, n)=Ap, (x,n)+
Bp_(x, n) one finds

_ W[p,p+]
Wip_,p.]

Wip,p_]
and = ——— =
Wip_.p.]

which yields the results.

We now divide the zeros of p_ (z, n) into two categories: category R,(n)
contains all the roots of p_ (z, n) that are also zeros of p_ (z,n—1), while
R,(n) contains all the other zeros of p ,(z, n).

LemMa 8. Suppose (111.20) holds, then all the zeros of p.(x,n) in
G—{o} are real, and p_ (x,n)#0 for xe E\(w"" =1). If x,€ Ry(n) and
x, € G, then x, is a simple zero of p . (x, n). Between two consecutive zeros of
P . (x, n) belonging to R,(n) that are not separated by an interval of E there
is a zero of p,(z,n—1) and a zero of p .(z,n+1).

Proof. From (IIL.26) one finds that all the zeros in R,(n) are real and
from (IIL.27) simple. Let x; and x,€ R,(n). be two consecutive zeros of
p . (z,n) such that an interval of E does not lie between them. Then the
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sum in (I11.27) is positive at x; and x,. Since p  (x, n} is real for all
x1<x<Xx,, p,.{x,n) must change signs between x, and x, implying
through (IT1.27) that p_(x,n—1) and p.{(x,n+1) change signs. Since
p.(x,n—1)and p_(x, n+ 1) are real for x; < x < x, they each must have a
zero inside that interval. To show that the zeros in R (n) are real, we begin
by noting that if x, e R/(n), x,e R (i) Vi. Now consider the system of
polynomials satisfying (II1.1) and (I11.14). Since p_ (z, m, ny) = ¢, (z, m) for
m>ng, x € R(n) only if it is a common zero of ¢, (z, i}, i>n,. But from
(11.24) any common zero of g, (z, i) must be a zero of g{x, N— 1) which is
real, implying all the zeros in R}*(n) are real. This coupled with the
arguments above show that all the zeros of p,(z, m, n,} are real. The
reality of the zeros of p_ (z, n) now follows from Corollary 3 and Hurwitz’s
theorem. That p_ (x, n) #0 for xe E\(w*"¥ =1) is a consequence of (I11.28).
For if we replace p(x,n) by p*)(x,n) we must replace p (x, —1) by
p.(x, k—1). Therefore if p(x, k—1) has a zero for xe E\(w** = 1) then
so would p _(x, k— 1) by Corollary 4 implying that all the p®(x, m) would
have a zero at that point contradicting the well-known interlacing property
of their zeros.

Let J, _, be the infinite dimensional matrix representation of (IIL.1).
Then x, is an eigenvalue of J iff there exists a nonzero W €/, such that

J = x4

LemMa 9. Suppose (IIL20) holds. If (a) f,.(x,)=0, x,e Ry(—1), and
x ¢E or (b)f (x)=0,f(x)=0, x,e Ry(—1) and x, ¢ E, then x is an
eigenvalue of J and

___[7+(x1! f’!)

p(xy, n) =5 0) (I11.30)

where

ﬁ+(x:n)=p+(xan) lfa hOL’dS,

(IIL.31)
=p.(,n)(x—x;)  ifbholds.

Proof. We begin with case (a) and consider the vector
Y=1{p,(x;,n)} . Then Y el,, Y # 0 and Ji = x, ¢ showing that x, is
an eigenvalue of J. In the case of (b) we note that p {x,,n)=0 and
g, (x;,n}=0 for all n. Consequently we can divide p_ (x, n) by x —x, and
not change equations (II1.1) or (III.15). Since

q+(x7 nN — 1)

X —X;

#0,

x=Xx1
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it follows that for large enough »,

p+(x9 nN — 1)
X—X X = x

#0.

Consequently, the vector ¥ = {j, (x,, n)} _, is an ecigenvector of J with
eigenvalue x;.

TaeOREM 4. If (1I1.22) holds then p  (x, n) has a finite number of zeros
on H.

Proof. We need only consider the number of zeros of p_,(x,n) on
E* U (w*M =1), since on E\(w*" =1) p (x, n) has no zeros, while for xe R,
x¢E*UE, p,(x,n) n=-1,0,1,.. has only a finite number of zeros
(Geronimo [9, Theorem IIL.1]). Consider now an interval E¥ of E* and let
x, and x,, x; <Xx, be the end points. We suppose there exists a ¢, (x, m)
such that ¢, (x,, m) #0. For if this is not the case then x, € R%(m), where 0
denotes the periodic system, and ¢, (x;,j)=0 Vj. Consequently we may
divide the integral equation for p, (x, n) ((IIL.15) after setting n,=co) by
(x —x,;) and use the same manipulations that led to (I11.21) to show that
lim,, _, , [w*~ Y¥(p* (x, m)—q* (x,m)| =0, m=kN+s uniformly on H.
Here p% (x, m)=p (x, m)/(x —x,), ¢%(x,m)=q, (x, m)/(x —x,). I there
does not exist a g% (x, m) such that ¢* (x,, m)#0 one repeats the above
procedure once again. (II1.31) shows that this procedure will be necessary
at most two times. Suppose that g (x;, m,)+#0, then (IL.27) shows that
g (x, mg+jN)#0. Let xq€ (3(x, + x»), x,) such that g (xg, m)#0 Vm,
and let D, , be the open disk centered on the real axis with x, and x, on
its boundary. Writing mg =k N + s, we see from (IIL.21) and (I1.27) that
there exists a j, such that for all j = j,,

WS~ ON(f (3, mo +N) = ¢ . (x, o +JN))|
< |w(k0+j—1)Nq+(x’ mo + jN)|, (ITL.32)

xe D, . Consequently, by Rouché’s theorem p , (x, mq+ jN) for j > j, has
the same number of zeros inside D, as g, (x, my+jN), ie., a finite num-
ber N,. Lemma 8 now tells us that p, (x, #) Vn has a finite number of zeros
in D, .. that does not exceed some number N,. One now repeats the above
argument for the open disk D, ., where X,€(x,, (x;+x,)/4) and
q (%o, m)#0 Vm. This shows that p _ (x, #) has a finite number of zeros in
the interval [x;, x,]. Repeating the above argument for the other at most
N — 2 intervals of E* gives the result.
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We now return to the system of polynomials satisfying (IIL.1) and
(I11.14).

Lemma 10. If g(x;,, N—1)=0 and p(x;)=0 then p_ (x;, m, ny)=0 for
all m. Consequently, (w™ " —w")/f _(x, no) is continuous on 0G. Further-
more,

S e m0) £ (X, mo) = ao(0) g(x, N—1)
X [ao(”o)P(X, Ry + N— L nO)p(x> Mg, nO)
— al(no) p(x, ng—1, ) p(x, ny + N, np) 1. (111.33)
Proof. 1f q(x;, N—1)=0 and p(x;)=0, then by Lemma 5 g  (x;, 1}=0
for all i. But then x;e R°(n) which implies that p , (x;, m, ny) =0 for all m.
Since ¢g_(x,m)=¢,(x,m) on E the result follows for p_(x, m, ny}). To

show the second part of the lemma we note that from (II1.28) one has for
xedG\ (W =1)

N S0 P 06 m, m0)—p_(x, my 1)
Tlomy) P T (N gt N 1) s
where
ff(x7 nO)
S(x)=—""9
(X) f+(xa nO)

From the definition of p_ and p, one finds that [S(x)|{=1,
x € 0G\(w* =1). Since

P+ (x, m, ng)
q(xn N_l) ’

p,(x, m, nO)

q(x’N_l) ’ f+(x’ nO) and f}_(x, n())

are continuous on 0G, (w~ " —w")/f _(x, ny) is continuous there also. To
find (IIL.33) we note that p_(x, m, ny) can be analytically continued onto
G. Therefore we can use (II1.28) on G. Setting n=n, and n=r,+ N in
(I11.28) then multiplying by p . (x, ny + N, ng) and p, (x, ng, ny) respectively
and subtracting yields

q.,(x, ny)[p(x, ng+ N, ng) — W—NP(X: g, ) ]

_ S (xn0) g4 (%, mo) g_(x, 1o)
B ao(N) q(x, N—1)
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Here we have used the facts that p,(x,ny+n,ny)=g.(x, ny+n) and
q.(x, ng+N)=w*"g, (x, ny). Now using (IL.31) yields

ao(ng+1)q., (x, ny)

g™ D, N—_1) [p(x, 10+ N,no) —w ™ "p(x,10, 1) 1. (IIL35)

f+(x9 n0)=

Consequently,

ag(no + 1)2
S (x,n0) f_(x, n) = g™ D(x, N—1)
X [p(x5 ny + Ns n0)2 +p(x9 Ro, nO)z— (WN+ W_N)

X p(xa Ry + N: nO)p(x’ Rg, nO)]' (11136)

q.(x, no) g_(x, o)

Since p(x, n, ny), p(x, n+ N, ng), and g™+ Y(x, n —ny— 1) satisfy the same
recurrence formula for n>=n,, one can write p(x,n+ N, ny)=
Ap(x, n, ny) + B (x,n—ny—1). Setting n=n, gives 4, and setting
n=n,+ 1 gives B. Now setting n=n,+ N yields

g (x, N=1)

_ p(x> nO+N9 nO)Z_p(x7 Ny, nO)p('x7 n0+2N7 nO)
p(x7 n0+Ns nO)p(x9 n0+ 1: nO)_P(x’ Ry, nO)p(x’ nO+N+ 15 nO).

Substituting (IL.31) into (II1.36) and then substituting the above equation
into (IT1.36) yields

S A%, m0) fAx, no) = ao(0) ag(no + 1) g(x, N—1)
X [p(xa n0+N7 ”O)P(xa n()+ 1’ nO)
- p(x’ Ny, no)P(X, n0+N+ la nO)]

where the fact that p(x,ny+ 2N, ny), p(x,ng+ N, ny), and p(x, ng, #g)
satisfy (II.8) has been used. Now incrementing p(x,ny,+1,n,) and
p(x, nyg+ N+ 1, ny) down by one using (I11.1) gives (II1.33).

IV. CONSTRUCTION OF THE MEASURE
We now proceed to construct the measure associated with the three term
recurrence formula (II1.1) whose coefficients satisfy (IIL.3). We will begin

by considering the systems satisfying (I1L.1) and (111.14).

THEOREM 5. Suppose the coefficients in (IIL1) satisfy (111.14), then the
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measure [ with respect to which the polynomials p(x, m, ny} are orthonormal
can be written as

duy=o0dx+ f p;0(x —x;) (IV.1)
where =
1
o(x) =m [GO(N) g(x, N—1)
x<4—{q(x, N)— (})\([ ) gV(x, N—2) 2>I/ ]
xe E\(wN = (1V.2)
and
:ﬁj(xk: 09 n())
S RN (v

Here E is given by (11.20) and p , (x, n), n=—1, 0,..., by (IIL31). x, is such
that x, € E* and [ (xx, no) = a(0) p_ (xg, —1, no) =0.
Proof. Consider the contour I'=1",u I, where
Ii={zlzl=1z#er "N =12, N-1}
and I, is the union of 2N-2 contours that encircles the 2N — 2 images of E*
under w—' (see Fig. 3).
Now consider the integral (m < n),
- _j“ ~f p(x, m, no) p o (X, 15 1)
I Iy

1

Wzyde=1,+1,, (IV4)

27'El'f+ (X, nO)

FiG. 3. The contour I. The set I'; is indicated in thick lines, the contours I', are in thin
lines. The arrows indicate the direction (N=7).
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where A(z) is the inverse mapping of w™', ie, z=w '(x) and x=h(z).
Since from (I1.15),

d —1
h'(z)=1/ zx o
x=h(z
0 N 1 4
= —N(W‘I"—WN)/<W_1 {q’(x, N)_a_:(l_]é%l)q< 0o N=2) } = )>’

(IV.5)

it follows from Lemma 10 that 7 is well defined. We first consider I,. Using
(I11.28) to eliminate p,(x,n, n,) and using the fact that f, (x, ny)=
f_(x,ny) on I'; yields

I = 1 J‘ p(x» m, ”o)Pﬁ(xa n, nO) /’l’(Z) dZ
1_% I ff(xano)
-1 f Wip.,p_1p(x, m no) p(x,n no) W(z)dz  (1v.6)
2mi I, |/ (x, m)l? '

+

Writing z=e¢® in the first integral in the above equation then letting
#— —0 and using the fact that under this change of variables,
p_(x,mny)—p, (x,nny) for all n while by (IV.5) e“h'(e”)—
—e Ph'(e~ ") gives

7 _lj W[p+,p,]p(x,m,no)p(x,n,no)h/(z)dz
1 —_ -
I

 mi £ (%, mo)|?
Writing I''=I,uIl'_, where I', =I' n{zzImz>0} and I'_=In

{z:Im z <0} then performing the same operation on the integral of I"_ that
one used on the first integral in (IV.6) yields

I —1J Wip..p_1p(x,m, ny)p(x, n,no) h'(z) dz
1 .
Iy

" 2mi 1 (6, 10)]2

Now mapping back to the set E and using the fact that on I

Wlp.,p_ 1= —iag(N)q(x, N—1)
x /4 {q(x, N)— (ao(N)ao(N+ 1)) ¢(x, N—2)}?

gives

1, =jEP()C, m, ng) p(x, 1, ny) o(x) dx av.7)
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where o(x) is given by (IV.2). Now [ is a closed contour and one can
evaluate the integral using the residue theorem. The possible singularities
will be at z=0 and the zeros of f, (x, #,) that are inside I". For large x one
has that

A
p(x= m, no)’*’( H }> xm’

alj
while from (11.24), (I1.32), and (IL.15) one finds that
pox,mmg) —n—t
—— —x{la(jyx """
f+(x ”o) ,UI

Now z=w(x)"'= Cx~', where C=(TTY_, ay(/))""" is the capacity of E.
Comnsequently,

p(x, m, no) p.(x,n,ng) W (Z) ﬁ _(L_ fl yCm gt (1V.g)

f (X, nO)

where the fact that 4'(z)~ — C/z* has been used. Therefore one sees that the
residue at z=0is —94,,,, m<n To evaluate the other residues we note
that all the zeros of p_(x, —1, ny) inside I" are in RP®(—1). Hence using
(IT1.30), one finds

I=¢

_Zp(h(zz)a m, nO)p(h(zi)a n, ”0)P+(h(2f)a 07 nO)
e (d/dz) £ (h(z), o} |,

where f, (h(z,), ny) =0 and the sum is a finite sum. In order to evaluate the
contribution due to I'; we make the change of variable z —» x=A(z). The
contour ['; is mapped to the intervals E (circumscribed twice), while the
contour [, is mapped to N—1 contours, each contour containing one
component of E* (see Fig. 4). Therefore

W(z) (IV.9)

1 p(xa m, nO)p+(x> n, mO)
— h'{z) d.
2ni f+(x> Hg) (Z) :
1 N—1

j p(xs m, no)P+(x’ a, nO) dX
D; f+(xs no}

2ni =

Dy Dy Dy Dy Dg Dg

£ Q 7\/5:1\ :g %
NN

F16.4. The images of the contours I and [, through the mapping A(z). The thick line is
the set £ and the small contours are the images of [, (N=17).




276 GERONIMO AND VAN ASSCHE

where D, is the contour around E*. The only zeros of 1, (x, n,) that will
contribute are those in Rj(—1) and those in R?(—1) such that
S (%1, n9)=0, x; € RP(—1). Consequently,

_1_ P(x, m, nO)p+(xa H, mO)
2niJr, J(x, ng)

n(z) dz

_ ﬁ+ ('xka 07 nO)

- %p('xk: m, nO)p(xk: n, n()) f(;(xk’ no)
where the minus sign comes from the fact that one is going around the con-
tours D, in the clockwise direction. Changing variables in (IV.9) then sub-
stituting the result along with (IV.7) and (IV.10) into (IV.4) gives the
theorem.

One may ecliminate the ay(N)gq(x, N—1) in (IV.2) using (IIL33) to
obtain the result found by Geronimus [16]. Furthermore, in this case we
may analytically continue p _(x, n, #,) on to G and evaluate p , (x, n, ny) at
a zero of f, (x, ny) using.(IIL28). Supposing f, (x;, n)=0 and gq(x,,
N—1)#0 one finds that

(1IV.10)

1
- 0) ¢(xe, N—1
Pk = T oo T Gee o) {“(’( ) 4(xe, N=1)

x/[q(xk, M- g0, N~z)]2—4}

Eliminating £, (x, ny) f_(x, ny) using (IT1.33) gives the formula for the mass
obtained by Geronimus [16]. Geronimus [17] has also obtained

CoRrOLLARY 11. Let u be the measure associated with (111.3) then
p(xy=1im, , . p,(x) and p(x)=p(x)+ py(x), where p.(x) is continuous
nondecreasing function whose points of increase are dense in E, and p, is a
Jump function. Let E, contain all the points of discontinuity of n, and let E,
be the derived set of E,, then E|  E.

Proof. That p, (x)— u(x) follows from Helly’s theorem and the uni-
queness of the moment problem. To show the second part let J and J, be
the infinite Jacobi matrices given by (IIL.1) and (IL2) respectively and set
J=Jy+J,, where J,=J—J,. By (IIL.3) J, is a compact operator and it is
a consequence of a theorem of Weyl [26] that the essential spectrum of J is
the same as the essential spectrum of J, thus giving the result.

TaeorReM 6. If (I11.20) holds then
du=o(x)dx+Y p;6(x—x,) (Iv.11)
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where

o(x)=ao(N) q(x, N—1)
(4= 1alx, N) —(ao(N)/ao(N + 1)) g, N—2)}*)'”

21/ o (v-12)
with xe E\(w*=1) and
ﬁ—f»(xia 0)
Lrre s Iv.13
T (v-13)

for x;e E. If (111.22) holds then the sum over i is finite.

Proof. The theorem follows from Theorems 4 and 5, Corollary 3, and
Lemma 8.

THEGREM 7. Suppose o oln(m+N+1)ky(ny<owo then Ino(x)e
LY(u,), where u, is the equilibrium measure on E, ie.,

dx

U B)=

LJ q(x, N)' — (ao(N)/ag(N + 1)) ¢'V(x, N~ 2)

Nr 3
\/4— {q(x, N)—K‘(’;V% g (x, N—2)}»

= L A(x) dx;

B a Borel subset of E.

Proof. From Jensens’ theorem one finds

Lﬁln“L A(( dyegj o(x)dx <o

and

Jln —d,ue\j dx < oo

which implies [z1In* o(x) du.(x) < co.
We must now show that |, In*(1/6(x)) du, < co. Consider the integral

I= j In* | f, (x, no)l d,
E
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where f, (x, ny) is given by (IIL35). Substituting (I11.24) into the above
equation and observing that In* exp g(x) = g(x) if g(x) = 0 yields

(n+ N) )d
Ntl—w 2 (nt N)) e

1<C+Aj (Z k()

Since | f(x) du. = (3" f(h(e?))(d0/2r) (Sario and Nakai [22]) we find

(n+ N) do
™| (n+ N) 2n

1<C+4 Z kz(n)f NI
which gives

ny
ISC+AC, Y In(n+N+1)ky(n).

n=0

Now letting n,— oo and then using Corollary 3 and (IV.12) gives the
result.

V. AsYymMpPTOTIC BEHAVIOR

We begin this section by deriving a formula first obtained by Geronimus

[161.

LemMma 11. Let p,(x, n) be any solution of (111.1) then

P1(x, n+2N) pTH D(x, N—1)
= pl(x,n+N)p(n+1)(x7 2N — 1)

a(n+1)

— mpl(x, n) p TN D(x, N—1). (V.1)

Proof. We will begin by showing that the above formula is true for
p(x, n). Since p(x, n), p"™(x, n—m), and p""*(x, n —m— 1) are solutions
of (IIL1) one finds

p(X, n) =P(x> m)p(M)(xa n “Wl)
al(m)

_mp(x,m—l)p<m+1)(x,n—m~1). (V.2)

Multiplying the above equation with n=n+ N and m=n+1, and with
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n=n+2Nand m=n+1by p"*Vx, 2N—1) and p”*+Y(x, N— 1) respec-
tively and then subtracting the resulting equations yields

p(x, n+N) pU (%, 2N — 1) — p(x, n + 2N) p" * D(x, N— 1)

a(n+1) (nt2)

_ 7 n 2 _2 {(n+1) __1
a(n+2)p(x,n){p (X, 2N=2) p""* {x, N -1}
— p D (x, N—2) p"+V(x, 2N — 1)} (V.3)

By analogy with (V.2) one has

p(n+m)(x’ 2N_m)=p(n+m)(x, N“m)p(nJrN)(x: N)

a(N+n) (+) T
_ BT et e N — 1
aNintn? e N—m=1)
x pr NI N 1), (V.4)

Multiplying the above equation with m=1, and with m=2 by
p" T (x, N—2) and p""* (x, N— 1) respectively and then subtracting the
resulting equations yields

p(n+2)(x’ 2N—2)p("+1)()€, N — I)ﬁp(n+l)(xj ON — 1)p("+2)(x, N—~2)

__an+2) iwey
~a(N+n+])p (x, N—1). (V.5)

In the above equation the fact that W[ p"+ D, p*2]= —g(n+2) has
been used. Inserting (V.5) into (V.3) gives (V.1) for p,(x,n)=p(x,n). Using
similar arguments one finds that p®(x, n+ 2N —1), p(x,n+ N—1), and
p"(x, n—1) satisfy (V.1) and, since all solutions of (IIL1) can be written
as a linear combination of p(x, n) and p!)(x, n), the lemma is proved.

It is possible to convert (V.1) into two recurrence. relations whenever
(IIL.3} holds. The following lemma is a generalization of a result given by
Geronimo and Case [8].

Lemma 12.  Equations (II1.1) and (111.2) with recurrence coefficients that
satisfy (IIL3) are equivalent to the two following relations

ag(n+ 1) p*tH(x, N—1)
a(n+1) ¢g"*HD(x, N—1)
x {(WFN—B(n, x)) plx, n) + W=t (x,n)}  (V.6)

plx,n+N)=

640/46/3-5
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and
. _ag(n+1)p"t V(x, N—1)
VI nt N =i T g G N 1)
AN _ a(n+1)
< | (1- (65
q(n+l)(x, N—l) 2 N
X m) >w — B(n, x)] p(x, n)}. (V.7)
where
_ N N a(n+1) .1 _
B(n,x)=w"+w ———ao(n+l)q (x, N—1)
e _dn_p e N2
prt U, N=1) an+1D)p"= VD, N-1)f "

and Yy*(x,0)=p(x,0)=1.

Proof. Solve (V.6) for ¥ *(x,n) and substitute this result into (V.7).
The resulting equation is (V.1), where one replaces p*"(x, 2N —1) by
(V.4) with m = 1.

If one subtracts (V.6) from (V.7) one finds

a(n+1) ¢g"(x, N—1)
ag(n+1)p”*H(x, N—1)

Yy (x,n+N)=p(x,n+N)— wF¥p(x,n). (V.9)

Consequently for the system satisfying (I1I11.14) one finds, using (II1.35),
that

S (6 mo) = aglno+ 1) — 9510 vt (V.10)

T (x, N—1)

This leads to

THEOREM 8. Suppose that (I11.20) is fulfilled, then for any integer j the
Jollowing limit holds:

qur(x, N—1)f,(x)

lim w=*¥p(x, kN4 j) = —— ,
e KN ) = e T 4 o W™ —w ]

uniformly on closed subsets of G.

Proof. 1f (I11.20) is fulfilled we can let no— oo in G to obtain

. ag(no+1) g, (x,
f+(x>:,,31—1>noo q(n0+1)(x’ ;/v_

1”)0) Wt (x, o). (V.11)
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Now setting n,=kN +j in the above equation and using the properties of
the periodic system one finds

ag(j+1 xJ) .. o ) ;
folx)= ;((J.JH)(;‘]A*,(_IJ))klgr;w E=DNy+(x, KN +j).  (V.12)

If one subtracts the two equations given by (V.6) from each other and then
multiplies the result by w —*" one has

W= DNY (KN ) — w4 DN (xRN )

N .

(V.13)

w = p(x, kN +j) =

wV —w~

Consequently, the result will be proved if one can show that
limy , o w™* DM ~(x, kN+/)=0 uniformly on closed subsets of G.
Finding the analog of (IIL8) for p""*"(x, N— 1) shows that

AN +j+1) N__l
tim 2N
ko qY T (x, N—1)

uniformly on closed subsets of G\{zeros of ¢+ (x, N—1)}. Thus, from
(V.9) and (II1.10) we see that the result will be demonstrated if one can
show that

lim w2V (x, (k+ 1) N+s)—w FFDV5(x kN +5)=0

k— o0

uniformly on closed subsets of G. Now from (I11.8) we have

w kT DNG(x (k+ 1) N+5)—w & ON5(x, kN + 5)
=w 2 Wa(x, (k+ 1) N+s)—w * "DV (x, kN +5)

AN+ s5—1
+ Y [w I (xn, (k+ 1) N+s)
n=0

— w T DNE (x, n, kN +5)] plx, n)

(k+1)N+s5s-1
4 y w= kT DNE (x,n, (k+ 1) N+5) p(x, n).  (V.14)

n=kN+s

From (II1.10) and (II1.12) we see that the last term goes to zero as k tends
to infinity uniformly on closed subsets of G. From (I1.24) and (I1.30) we
find

w=EEDNg(x, (k+ 1) N+5) —w~ EE DV (x, kN +5)| = |w = T2 (x, )]
<D w %N, (V.15)
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which leaves only the second term to be discussed. From (I11.6) and (II1.9)
one finds

W_(k+2)Nk1(x, n (k+1)N+s)— w~(k+1)Nkl(x, n, kN + s5)

(bo(n)=b(n)) iy
_WW( W{g"D(x, (k+1)N+s—n—1)

— whg TV (x, kN+s—n—1)}

ag(n+1) {1 _d¥n+1)
ay(n+2) aj(n+1)

— whg" D, kN+s—n—2)}. (V.16)

}w_(k”w{q(””)(x, (k+1)N+s—n—2)

Now setting n =mM + p and using (I1.22) and (11.23) yields
(w=*+DNE (x,n, (k+ 1) N+s5)—w~ * TN (x, n, kN + 5)]
< { bo(n) —b(n)

ag(n—1)
Substituting this result into the second term in (V.14) then using (1I1.10)
gives the result.

On the spectrum we have, from (II1.28), (IIL.21), Theorem 1 and the
properties of w(x) and %(z).

ag(n+1) 1_az(n+ 1)
ag(n+2) ai(n+1)

H Dw = N (V.17)

TueoreM 8. If (IIL20) holds then for every x e E\(w*" =1)

|:p(x, kN +5)
lg 4 (x, 5)|

X \/[4—{q(x, N)_#(Tﬂqm(x, N—2)}2T/2

— cos(kNO + (0, s))] =0,

lim

k— oo

/876 (x) ag(N) g(x, N—1)

where 0=argw(x) and I(0,s)= —argf, (h(e"?))+argq, (h(e®),s)+ n/2.
Furthermore the convergence is uniform on compact subsets of E\(w*" =1).
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